|
|
|
|
|
|
|
import os |
|
import time |
|
import math |
|
from contextlib import nullcontext |
|
import json |
|
|
|
import numpy as np |
|
import torch |
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
from torch.distributed import init_process_group, destroy_process_group |
|
import pandas as pd |
|
|
|
import tiktoken |
|
from model import GPTConfig, GPT |
|
|
|
|
|
import wandb |
|
from tqdm.auto import tqdm |
|
|
|
|
|
|
|
|
|
out_dir = 'out' |
|
eval_interval = 100 |
|
log_interval = 1 |
|
eval_iters = 100 |
|
eval_only = False |
|
always_save_checkpoint = True |
|
init_from = 'scratch' |
|
checkpoint_path = '' |
|
|
|
wandb_log = True |
|
wandb_project = 'gpt2_positional_encodings_100B' |
|
wandb_run_name = 'experiment' |
|
|
|
dataset = 'fineweb' |
|
gradient_accumulation_steps = 40 |
|
batch_size = 12 |
|
block_size = 512 |
|
|
|
n_layer = 4 |
|
n_head = 4 |
|
n_embd = 256 |
|
dropout = 0.0 |
|
bias = False |
|
|
|
learning_rate = 6e-4 |
|
max_iters = 10000 |
|
weight_decay = 1e-1 |
|
beta1 = 0.9 |
|
beta2 = 0.95 |
|
grad_clip = 1.0 |
|
|
|
decay_lr = True |
|
warmup_iters = 100 |
|
lr_decay_iters = 10000 |
|
min_lr = 6e-5 |
|
|
|
backend = 'nccl' |
|
|
|
device = 'cuda' |
|
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' |
|
compile = True |
|
|
|
embedding_types = ['wavelet'] |
|
attention_types = ['default'] |
|
|
|
collect_attention_patterns = False |
|
collect_activations = False |
|
|
|
eval_datasets = ['wikitext-103-v1', 'ptb', 'lambada'] |
|
seed = 1337 |
|
|
|
config_keys = [k for k, v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str, list, tuple))] |
|
exec(open('configurator.py').read()) |
|
config = {k: globals()[k] for k in config_keys} |
|
|
|
|
|
def is_compatible(embedding_type, attention_type): |
|
|
|
incompatible_combinations = [ |
|
|
|
] |
|
|
|
|
|
if embedding_type == 'none' and attention_type in ['relative', 'rope']: |
|
return False |
|
|
|
|
|
if attention_type == 'rope' and ((n_embd // n_head) % 2 != 0): |
|
return False |
|
|
|
return (embedding_type, attention_type) not in incompatible_combinations |
|
|
|
def main(): |
|
|
|
global gradient_accumulation_steps |
|
ddp = int(os.environ.get('RANK', -1)) != -1 |
|
if ddp: |
|
init_process_group(backend=backend) |
|
ddp_rank = int(os.environ['RANK']) |
|
ddp_local_rank = int(os.environ['LOCAL_RANK']) |
|
ddp_world_size = int(os.environ['WORLD_SIZE']) |
|
device_local = f'cuda:{ddp_local_rank}' |
|
torch.cuda.set_device(device_local) |
|
master_process = ddp_rank == 0 |
|
seed_offset = ddp_rank |
|
assert gradient_accumulation_steps % ddp_world_size == 0 |
|
gradient_accumulation_steps //= ddp_world_size |
|
else: |
|
master_process = True |
|
seed_offset = 0 |
|
ddp_world_size = 1 |
|
device_local = device |
|
|
|
tokens_per_iter = gradient_accumulation_steps * ddp_world_size * batch_size * block_size |
|
if master_process: |
|
print(f"Tokens per iteration will be: {tokens_per_iter:,}") |
|
|
|
if master_process: |
|
os.makedirs(out_dir, exist_ok=True) |
|
|
|
|
|
global seed |
|
seed += seed_offset |
|
torch.manual_seed(seed) |
|
np.random.seed(seed) |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
device_type = 'cuda' if 'cuda' in device_local else 'cpu' |
|
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] |
|
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype) |
|
|
|
|
|
tokenizer = tiktoken.get_encoding("gpt2") |
|
|
|
|
|
eval_data = {} |
|
for eval_dataset in eval_datasets: |
|
eval_data_path = os.path.join('data', eval_dataset) |
|
if not os.path.exists(eval_data_path): |
|
raise FileNotFoundError(f"Dataset {eval_dataset} not found. Please run prepare_evaluation_data.py first.") |
|
|
|
if eval_dataset in ['wikitext-2-v1', 'wikitext-103-v1']: |
|
train_file = [f for f in os.listdir(eval_data_path) if f.startswith('train')][0] |
|
val_file = [f for f in os.listdir(eval_data_path) if f.startswith('validation')][0] |
|
|
|
train_df = pd.read_parquet(os.path.join(eval_data_path, train_file)) |
|
val_df = pd.read_parquet(os.path.join(eval_data_path, val_file)) |
|
|
|
train_text = '\n'.join(train_df['text']) |
|
val_text = '\n'.join(val_df['text']) |
|
|
|
elif eval_dataset == 'ptb': |
|
with open(os.path.join(eval_data_path, 'train.txt'), 'r') as f: |
|
train_text = f.read() |
|
with open(os.path.join(eval_data_path, 'valid.txt'), 'r') as f: |
|
val_text = f.read() |
|
|
|
elif eval_dataset == 'lambada': |
|
with open(os.path.join(eval_data_path, 'lambada_test.jsonl'), 'r') as f: |
|
data = [json.loads(line) for line in f] |
|
test_text = '\n'.join([item['text'] for item in data]) |
|
train_text = test_text[:len(test_text)//2] |
|
val_text = test_text[len(test_text)//2:] |
|
|
|
else: |
|
raise ValueError(f"Unknown dataset: {eval_dataset}") |
|
|
|
|
|
train_ids = tokenizer.encode_ordinary(train_text) |
|
val_ids = tokenizer.encode_ordinary(val_text) |
|
|
|
|
|
train_ids = np.array(train_ids, dtype=np.uint16) |
|
val_ids = np.array(val_ids, dtype=np.uint16) |
|
|
|
eval_data[eval_dataset] = {'train': train_ids, 'val': val_ids} |
|
|
|
|
|
data_dir = os.path.join('data', dataset) |
|
|
|
def get_batch(split, dataset='main'): |
|
if dataset == 'main': |
|
if split == 'train': |
|
data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r') |
|
else: |
|
data = np.memmap(os.path.join(data_dir, 'val.bin'), dtype=np.uint16, mode='r') |
|
else: |
|
data = eval_data[dataset][split] |
|
|
|
ix = torch.randint(len(data) - block_size, (batch_size,)) |
|
x = torch.stack([torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix]) |
|
y = torch.stack([torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64)) for i in ix]) |
|
if device_type == 'cuda': |
|
x, y = x.pin_memory().to(device_local, non_blocking=True), y.pin_memory().to(device_local, non_blocking=True) |
|
else: |
|
x, y = x.to(device_local), y.to(device_local) |
|
return x, y |
|
|
|
|
|
meta_path = os.path.join(data_dir, 'meta.json') |
|
meta_vocab_size = None |
|
if os.path.exists(meta_path): |
|
with open(meta_path, 'r') as f: |
|
meta = json.load(f) |
|
meta_vocab_size = meta['vocab_size'] |
|
if master_process: |
|
print(f"Found vocab_size = {meta_vocab_size} (inside {meta_path})") |
|
|
|
|
|
@torch.no_grad() |
|
def estimate_loss(model, collect_attention_patterns=False, collect_activations=False, save_dir=None, max_batches_to_save=None): |
|
out = {} |
|
model.eval() |
|
|
|
raw_model = model.module if hasattr(model, 'module') else model |
|
|
|
|
|
raw_model.config.track_attention_patterns = collect_attention_patterns |
|
raw_model.config.track_activations = collect_activations |
|
|
|
if collect_attention_patterns or collect_activations: |
|
if save_dir is None: |
|
raise ValueError("save_dir must be specified when collecting attention patterns or activations.") |
|
if master_process: |
|
os.makedirs(save_dir, exist_ok=True) |
|
|
|
for split in ['train', 'val']: |
|
losses = torch.zeros(eval_iters) |
|
save_count = 0 |
|
for k in range(eval_iters): |
|
X, Y = get_batch(split) |
|
with ctx: |
|
logits, loss = model(X, Y) |
|
losses[k] = loss.item() |
|
|
|
if (collect_attention_patterns or collect_activations) and save_count < (max_batches_to_save or eval_iters): |
|
if collect_attention_patterns or collect_activations: |
|
if master_process: |
|
batch_dir = os.path.join(save_dir, f"{split}_batch_{k}") |
|
os.makedirs(batch_dir, exist_ok=True) |
|
|
|
if collect_activations and hasattr(raw_model, 'activations'): |
|
for idx, activation in enumerate(raw_model.activations): |
|
activation_path = os.path.join(batch_dir, f"activation_layer_{idx}.pt") |
|
torch.save(activation, activation_path) |
|
|
|
if collect_attention_patterns and hasattr(raw_model, 'attention_patterns'): |
|
for idx, attention in enumerate(raw_model.attention_patterns): |
|
attention_path = os.path.join(batch_dir, f"attention_layer_{idx}.pt") |
|
torch.save(attention, attention_path) |
|
|
|
raw_model.activations = [] |
|
raw_model.attention_patterns = [] |
|
save_count += 1 |
|
out[split] = losses.mean().item() |
|
|
|
|
|
for eval_dataset in eval_datasets: |
|
split_losses = {} |
|
for split in ['train', 'val']: |
|
losses = torch.zeros(eval_iters) |
|
save_count = 0 |
|
for k in range(eval_iters): |
|
X, Y = get_batch(split, dataset=eval_dataset) |
|
with ctx: |
|
logits, loss = model(X, Y) |
|
losses[k] = loss.item() |
|
|
|
if (collect_attention_patterns or collect_activations) and save_count < (max_batches_to_save or eval_iters): |
|
if collect_attention_patterns or collect_activations: |
|
if master_process: |
|
batch_dir = os.path.join(save_dir, f"{eval_dataset}_{split}_batch_{k}") |
|
os.makedirs(batch_dir, exist_ok=True) |
|
|
|
if collect_activations and hasattr(raw_model, 'activations'): |
|
for idx, activation in enumerate(raw_model.activations): |
|
activation_path = os.path.join(batch_dir, f"activation_layer_{idx}.pt") |
|
torch.save(activation, activation_path) |
|
|
|
if collect_attention_patterns and hasattr(raw_model, 'attention_patterns'): |
|
for idx, attention in enumerate(raw_model.attention_patterns): |
|
attention_path = os.path.join(batch_dir, f"attention_layer_{idx}.pt") |
|
torch.save(attention, attention_path) |
|
|
|
raw_model.activations = [] |
|
raw_model.attention_patterns = [] |
|
save_count += 1 |
|
split_losses[split] = losses.mean().item() |
|
out[eval_dataset] = split_losses |
|
model.train() |
|
|
|
raw_model.config.track_attention_patterns = False |
|
raw_model.config.track_activations = False |
|
return out |
|
|
|
|
|
def get_lr(it): |
|
if it < warmup_iters: |
|
return learning_rate * it / warmup_iters |
|
if it > lr_decay_iters: |
|
return min_lr |
|
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters) |
|
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) |
|
return min_lr + coeff * (learning_rate - min_lr) |
|
|
|
|
|
for embedding_type in embedding_types: |
|
for attention_type in attention_types: |
|
if not is_compatible(embedding_type, attention_type): |
|
if master_process: |
|
print(f"Skipping incompatible combination: Embedding={embedding_type}, Attention={attention_type}") |
|
continue |
|
|
|
|
|
model_args = dict( |
|
n_layer=n_layer, |
|
n_head=n_head, |
|
n_embd=n_embd, |
|
block_size=block_size, |
|
bias=bias, |
|
vocab_size=None, |
|
dropout=dropout, |
|
embedding_type=embedding_type, |
|
attention_type=attention_type, |
|
track_activations=False, |
|
track_attention_patterns=False, |
|
) |
|
|
|
|
|
iter_num = 0 |
|
best_val_loss = 1e9 |
|
checkpoint = None |
|
run_id = None |
|
|
|
if init_from == 'scratch': |
|
if master_process: |
|
print(f"\nInitializing new model with embedding_type={embedding_type}, attention_type={attention_type}") |
|
if meta_vocab_size is None: |
|
if master_process: |
|
print("Defaulting to vocab_size of GPT-2 to 50257") |
|
model_args['vocab_size'] = meta_vocab_size if meta_vocab_size is not None else 50257 |
|
gptconf = GPTConfig(**model_args) |
|
model = GPT(gptconf) |
|
elif init_from == 'resume': |
|
|
|
ckpt_path = os.path.join(out_dir, f"ckpt_{embedding_type}_{attention_type}.pt") |
|
if not os.path.exists(ckpt_path): |
|
raise FileNotFoundError(f"Checkpoint not found at {ckpt_path}") |
|
if master_process: |
|
print(f"\nResuming training from checkpoint {ckpt_path}") |
|
checkpoint = torch.load(ckpt_path, map_location=device_local) |
|
gptconf = GPTConfig(**checkpoint['model_args']) |
|
model = GPT(gptconf) |
|
model.load_state_dict(checkpoint['model']) |
|
iter_num = checkpoint['iter_num'] |
|
best_val_loss = checkpoint['best_val_loss'] |
|
seed = checkpoint.get('seed', seed) |
|
run_id = checkpoint.get('wandb_run_id', None) |
|
elif init_from == 'checkpoint': |
|
|
|
if not checkpoint_path or not os.path.exists(checkpoint_path): |
|
raise FileNotFoundError(f"Checkpoint not found at {checkpoint_path}") |
|
if master_process: |
|
print(f"\nLoading model from checkpoint {checkpoint_path}") |
|
checkpoint = torch.load(checkpoint_path, map_location=device_local) |
|
gptconf = GPTConfig(**checkpoint['model_args']) |
|
model = GPT(gptconf) |
|
model.load_state_dict(checkpoint['model']) |
|
iter_num = checkpoint['iter_num'] |
|
best_val_loss = checkpoint['best_val_loss'] |
|
seed = checkpoint.get('seed', seed) |
|
run_id = checkpoint.get('wandb_run_id', None) |
|
else: |
|
raise ValueError(f"Unknown init_from '{init_from}'") |
|
|
|
|
|
seed += seed_offset |
|
torch.manual_seed(seed) |
|
np.random.seed(seed) |
|
|
|
model.to(device_local) |
|
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float16')) |
|
optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1, beta2), device_type) |
|
|
|
|
|
if checkpoint is not None: |
|
optimizer.load_state_dict(checkpoint['optimizer']) |
|
|
|
if compile: |
|
if master_process: |
|
print("Compiling the model... (takes a ~minute)") |
|
unoptimized_model = model |
|
model = torch.compile(model) |
|
|
|
if ddp: |
|
model = DDP(model, device_ids=[ddp_local_rank]) |
|
|
|
|
|
if wandb_log and master_process: |
|
run_name = f"{embedding_type}_{attention_type}_{wandb_run_name}" |
|
|
|
wandb.init(project=wandb_project, name=run_name, config=config, resume='allow', id=run_id) |
|
|
|
run_id = wandb.run.id |
|
else: |
|
run_id = None |
|
|
|
|
|
X, Y = get_batch('train') |
|
t0 = time.time() |
|
local_iter_num = 0 |
|
raw_model = model.module if hasattr(model, 'module') else model |
|
running_mfu = -1.0 |
|
progress_bar = tqdm(total=max_iters, initial=iter_num, desc=f"Training {embedding_type} + {attention_type}", disable=not master_process) |
|
progress_bar_update_freq = 1 |
|
|
|
while True: |
|
|
|
lr = get_lr(iter_num) if decay_lr else learning_rate |
|
for param_group in optimizer.param_groups: |
|
param_group['lr'] = lr |
|
|
|
|
|
if iter_num % eval_interval == 0 and iter_num > 0: |
|
|
|
eval_data_dir = os.path.join('data', 'eval_data', f"{embedding_type}_{attention_type}", f"step_{iter_num}") |
|
|
|
max_batches_to_save = 10 |
|
losses = estimate_loss(model, |
|
collect_attention_patterns=collect_attention_patterns, |
|
collect_activations=collect_activations, |
|
save_dir=eval_data_dir, |
|
max_batches_to_save=max_batches_to_save) |
|
if master_process: |
|
print(f"\nStep {iter_num}:") |
|
print(f"Train loss: {losses['train']:.4f}, Val loss: {losses['val']:.4f}") |
|
for eval_dataset in eval_datasets: |
|
print(f"{eval_dataset} - Train loss: {losses[eval_dataset]['train']:.4f}, Val loss: {losses[eval_dataset]['val']:.4f}") |
|
|
|
if wandb_log: |
|
wandb_metrics = { |
|
"iter": iter_num, |
|
"train/loss": losses['train'], |
|
"val/loss": losses['val'], |
|
"lr": lr, |
|
"mfu": running_mfu * 100, |
|
} |
|
for eval_dataset in eval_datasets: |
|
wandb_metrics[f"{eval_dataset}/train_loss"] = losses[eval_dataset]['train'] |
|
wandb_metrics[f"{eval_dataset}/val_loss"] = losses[eval_dataset]['val'] |
|
wandb.log(wandb_metrics, step=iter_num) |
|
if losses['val'] < best_val_loss or always_save_checkpoint: |
|
best_val_loss = losses['val'] |
|
if iter_num > 0: |
|
checkpoint = { |
|
'model': raw_model.state_dict(), |
|
'optimizer': optimizer.state_dict(), |
|
'model_args': model_args, |
|
'iter_num': iter_num, |
|
'best_val_loss': best_val_loss, |
|
'config': config, |
|
'seed': seed, |
|
'wandb_run_id': run_id |
|
} |
|
ckpt_path = os.path.join(out_dir, f"ckpt_{embedding_type}_{attention_type}.pt") |
|
if master_process: |
|
print(f"Saving checkpoint to {ckpt_path}") |
|
torch.save(checkpoint, ckpt_path) |
|
|
|
if master_process: |
|
postfix_dict = { |
|
'train_loss': f"{losses['train']:.4f}", |
|
'val_loss': f"{losses['val']:.4f}" |
|
} |
|
for eval_dataset in eval_datasets: |
|
postfix_dict[f"{eval_dataset}_val_loss"] = f"{losses[eval_dataset]['val']:.4f}" |
|
progress_bar.set_postfix(postfix_dict) |
|
|
|
if eval_only: |
|
break |
|
|
|
|
|
for micro_step in range(gradient_accumulation_steps): |
|
if ddp: |
|
model.require_backward_grad_sync = (micro_step == gradient_accumulation_steps - 1) |
|
with ctx: |
|
logits, loss = model(X, Y) |
|
loss = loss / gradient_accumulation_steps |
|
X, Y = get_batch('train') |
|
scaler.scale(loss).backward() |
|
if grad_clip != 0.0: |
|
scaler.unscale_(optimizer) |
|
torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip) |
|
scaler.step(optimizer) |
|
scaler.update() |
|
optimizer.zero_grad(set_to_none=True) |
|
|
|
|
|
t1 = time.time() |
|
dt = t1 - t0 |
|
t0 = t1 |
|
if iter_num % log_interval == 0: |
|
lossf = loss.item() * gradient_accumulation_steps |
|
if local_iter_num >= 5: |
|
mfu = raw_model.estimate_mfu(batch_size * gradient_accumulation_steps, dt) |
|
running_mfu = mfu if running_mfu == -1.0 else 0.9 * running_mfu + 0.1 * mfu |
|
if master_process: |
|
progress_bar.set_postfix({ |
|
'loss': f"{lossf:.4f}", |
|
'lr': f"{lr:.2e}", |
|
'mfu': f"{running_mfu*100:.2f}%", |
|
'time_per_iter_ms': f"{dt * 1000:.2f}ms", |
|
}) |
|
if wandb_log: |
|
wandb.log({ |
|
"iter": iter_num, |
|
"train/loss": lossf, |
|
"lr": lr, |
|
"mfu": running_mfu * 100, |
|
"time_per_iter_ms": dt * 1000, |
|
}, step=iter_num) |
|
iter_num += 1 |
|
local_iter_num += 1 |
|
if master_process: |
|
progress_bar.update(progress_bar_update_freq) |
|
|
|
if iter_num > max_iters: |
|
break |
|
|
|
if master_process: |
|
progress_bar.close() |
|
if wandb_log and master_process: |
|
wandb.finish() |
|
|
|
|
|
if ddp: |
|
destroy_process_group() |
|
|
|
if __name__ == '__main__': |
|
main() |