File size: 41,656 Bytes
bd0cf90 fa13e2d 4b98c9f 7095c31 4b98c9f fa13e2d bd0cf90 7095c31 68bff3e 75d7cc9 68628af 75d7cc9 7095c31 ff101c7 7095c31 ff101c7 7095c31 ff101c7 7095c31 f2ec13d ff101c7 f2ec13d e280b1a ff101c7 f2ec13d ff101c7 7095c31 ff101c7 7095c31 e280b1a ff101c7 68bff3e d1466f8 ff101c7 7bc1783 ff101c7 ec73b49 43546f4 ec73b49 ff101c7 ec73b49 ff101c7 b193ecd ff101c7 68bff3e 7bc1783 ff101c7 68bff3e ff101c7 68bff3e ec73b49 68bff3e ff101c7 15b0a41 ff101c7 fa7f857 ff101c7 7bc1783 15b0a41 ec73b49 7bc1783 ec73b49 7bc1783 ec73b49 7bc1783 ec73b49 7bc1783 ec73b49 7bc1783 ec73b49 7bc1783 ec73b49 7bc1783 ff101c7 f2ec13d 8610227 f2ec13d 7ab56a6 f2ec13d ee569d7 ff101c7 2e75587 7095c31 ff101c7 7095c31 68bff3e 7095c31 8610227 7095c31 68bff3e ff101c7 ec73b49 43546f4 ec73b49 43546f4 ec73b49 43546f4 ec73b49 15b0a41 ec73b49 43546f4 ec73b49 15b0a41 43546f4 ec73b49 43546f4 ec73b49 43546f4 ec73b49 43546f4 ec73b49 43546f4 ec73b49 15b0a41 ec73b49 15b0a41 43546f4 15b0a41 43546f4 15b0a41 43546f4 ec73b49 ff101c7 ec73b49 ff101c7 599ad62 ff101c7 599ad62 ff101c7 b193ecd 599ad62 ff101c7 68bff3e ff101c7 ec73b49 ff101c7 ec73b49 ff101c7 b193ecd 770823e ff101c7 b193ecd ff101c7 7095c31 68bff3e 1d99269 68bff3e ff101c7 ee569d7 ec73b49 ee569d7 ff101c7 ee569d7 ec73b49 ee569d7 ff101c7 ee569d7 ff101c7 68bff3e ff101c7 8610227 ff101c7 68bff3e b193ecd 6ddb316 788d643 6ddb316 788d643 6ddb316 4110c62 b193ecd ff101c7 68bff3e 7095c31 68bff3e ff101c7 68bff3e 7095c31 ff101c7 43546f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 |
---
license: other
license_name: yi-license
license_link: LICENSE
widget:
- example_title: "Yi-34B-Chat"
text: "hi"
output:
text: " Hello! How can I assist you today?"
- example_title: "Yi-34B"
text: "There's a place where time stands still. A place of breath taking wonder, but also"
output:
text: " an eerie sense that something is just not right…\nBetween the two worlds lies The Forgotten Kingdom - home to creatures long since thought extinct and ancient magic so strong it defies belief! Only here can you find what has been lost for centuries: An Elixir Of Life which will restore youth and vitality if only those who seek its power are brave enough to face up against all manner of dangers lurking in this mysterious land! But beware; some say there may even exist powerful entities beyond our comprehension whose intentions towards humanity remain unclear at best ---- they might want nothing more than destruction itself rather then anything else from their quest after immortality (and maybe someone should tell them about modern medicine)? In any event though – one thing remains true regardless : whether or not success comes easy depends entirely upon how much effort we put into conquering whatever challenges lie ahead along with having faith deep down inside ourselves too ;) So let’s get started now shall We?"
pipeline_tag: text-generation
---
<div align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_dark.svg" width="200px">
<source media="(prefers-color-scheme: light)" srcset="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_light.svg" width="200px">
<img alt="specify theme context for images" src="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_light.svg">
</picture>
</br>
</br>
<div style="display: inline-block;">
<a href="https://github.com/01-ai/Yi/actions/workflows/build_docker_image.yml">
<img src="https://github.com/01-ai/Yi/actions/workflows/build_docker_image.yml/badge.svg">
</a>
</div>
<div style="display: inline-block;">
<a href="https://github.com/01-ai/Yi/blob/main/LICENSE">
<img src="https://img.shields.io/badge/Code_License-Apache_2.0-lightblue">
</a>
</div>
<div style="display: inline-block;">
<a href="https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt">
<img src="https://img.shields.io/badge/Model_License-Yi_License-lightblue">
</a>
</div>
<div style="display: inline-block;">
<a href="mailto:oss@01.ai">
<img src="https://img.shields.io/badge/✉️-yi@01.ai-FFE01B">
</a>
</div>
</div>
<div align="center">
<h3 align="center">Building the Next Generation of Open-Source and Bilingual LLMs</h3>
</div>
<p align="center">
🤗 <a href="https://huggingface.co/01-ai" target="_blank">Hugging Face</a> • 🤖 <a href="https://www.modelscope.cn/organization/01ai/" target="_blank">ModelScope</a> • ✡️ <a href="https://wisemodel.cn/organization/01.AI" target="_blank">WiseModel</a>
</p>
<p align="center">
👋 Join us 💬 <a href="https://github.com/01-ai/Yi/issues/43#issuecomment-1827285245" target="_blank"> WeChat (Chinese) </a>!
</p>
<!-- DO NOT REMOVE ME -->
<hr>
<details open>
<summary></b>📕 Table of Contents</b></summary>
- [🟢 What is Yi?](#-what-is-yi)
- [📌 Introduction](#-introduction)
- [🎯 Models](#-models)
- [Chat models](#chat-models)
- [Base models](#base-models)
- [Other info](#other-info)
- [🎉 News](#-news)
- [🟢 How to use Yi?](#-how-to-use-yi)
- [Quick start](#quick-start)
- [Choose your path](#choose-your-parth)
- [pip](#pip)
- [llama.cpp](https://github.com/01-ai/Yi/blob/main/docs/yi_llama.cpp.md)
- [Web demo](#web-demo)
- [Fine tune](#fine-tune)
- [Quantization](#quantization)
- [Deployment](https://github.com/01-ai/Yi/blob/main/docs/deployment.md)
- [Learning hub](https://github.com/01-ai/Yi/blob/main/docs/learning_hub.md)
- [🟢 Why Yi?](#-why-yi)
- [🌎 Ecosystem](#-ecosystem)
- [💦 Upstream](#-upstream)
- [🌊 Downstream](#-downstream)
- [🔗 Serving](#-serving)
- [⚙️ Quantitation](#️-quantitation)
- [🛠️ Fine-tuning](#️-fine-tuning)
- [API](#api)
- [📌 Benchmarks](#-benchmarks)
- [📊 Base model performance](#-base-model-performance)
- [📊 Chat model performance](#-chat-model-performance)
- [📊 Quantized chat model performance](#-quantized-chat-model-performance)
- [🟢 Who can use Yi?](#-who-can-use-yi)
- [🟢 Misc.](#-misc)
- [Ackknowledgements](#acknowledgments)
- [📡 Disclaimer](#-disclaimer)
- [🪪 License](#-license)
</details>
<hr>
# 🟢 What is Yi?
## 📌 Introduction
- 🤖 The Yi series models are the next generation of open-source large language models trained from scratch by [01.AI](https://01.ai/).
- 🙌 Targeted as a bilingual language model and trained on 3T multilingual corpus, the Yi series models become one of the strongest LLM worldwide, showing promise in language understanding, commonsense reasoning, reading comprehension, and more. For example,
- For English language capability, the Yi series models ranked 2nd (just behind GPT-4), outperforming other LLMs (such as LLaMA2-chat-70B, Claude 2, and ChatGPT) on the [AlpacaEval Leaderboard](https://tatsu-lab.github.io/alpaca_eval/) in Dec 2023.
- For Chinese language capability, the Yi series models landed in 2nd place (following GPT-4), surpassing other LLMs (such as Baidu ERNIE, Qwen, and Baichuan) on the [SuperCLUE](https://www.superclueai.com/) in Oct 2023.
- 🙏 (Credits to LLaMA) Thanks to the Transformer and LLaMA open-source communities, as they reducing the efforts required to build from scratch and enabling the utilization of the same tools within the AI ecosystem. If you're interested in Yi's adoption of LLaMA architecture and license usage policy, see [Yi's relation with LLaMA](https://github.com/01-ai/Yi/blob/main/docs/yi_relation_llama.md).
<div align="right"> [ <a href="#building-the-next-generation-of-open-source-and-bilingual-llms">Back to top ⬆️ </a> ] </div>
## 🎯 Models
Yi models come in multiple sizes and cater to different use cases. You can also fine-tune Yi models to meet your specific requirements.
If you want to deploy Yi models, see [software and hardware requirements](https://github.com/01-ai/Yi/blob/main/docs/deployment.md#hardware-requirements).
### Chat models
| Model | Download
|---|---
Yi-6B-Chat| • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-6B-Chat) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-6B-Chat/summary)
Yi-6B-Chat-4bits | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-6B-Chat-4bits) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-6B-Chat-4bits/summary)
Yi-6B-Chat-8bits | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-6B-Chat-8bits) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-6B-Chat-8bits/summary)
Yi-34B-Chat | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-34B-Chat) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-34B-Chat/summary)
Yi-34B-Chat-4bits | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-34B-Chat-4bits) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-34B-Chat-4bits/summary)
Yi-34B-Chat-8bits | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-34B-Chat-8bits) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-34B-Chat-8bits/summary)
<sub><sup> - 4-bit series models are quantized by AWQ. <br> - 8-bit series models are quantized by GPTQ <br> - All quantized models have a low barrier to use since they can be deployed on consumer-grade GPUs (e.g., 3090, 4090). </sup></sub>
### Base models
| Model | Download |
|---|---|
Yi-6B| • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-6B) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-6B/summary)
Yi-6B-200K | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-6B-200K) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-6B-200K/summary)
Yi-34B| • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-34B) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-34B/summary)
Yi-34B-200K|• [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-34B-200K) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-34B-200K/summary)
<sub><sup> - 200k is roughly equivalent to 400,000 Chinese characters. </sup></sub>
### Other info
- For chat and base models:
- 6B series models are suitable for personal and academic use.
- 34B series models suitable for personal, academic, and commercial (particularly for small and medium-sized enterprises) purposes. It's a cost-effective solution that's affordable and equipped with emergent ability.
- The **default context window** is **4k tokens**.
- The pretrained tokens are 3T.
- The training data are up to June 2023.
- For chat models:
- For detailed chat model limitations, see [limitations of chat model](https://github.com/01-ai/Yi/blob/main/docs/README_legacy.md#limitations-of-chat-model).
<div align="right"> [ <a href="#building-the-next-generation-of-open-source-and-bilingual-llms">Back to top ⬆️ </a> ] </div>
## 🎉 News
<details>
<summary>🎯 <b>2023/11/23</b>: The chat models are open to public.</summary>
This release contains two chat models based on previously released base models, two 8-bit models quantized by GPTQ, and two 4-bit models quantized by AWQ.
- `Yi-34B-Chat`
- `Yi-34B-Chat-4bits`
- `Yi-34B-Chat-8bits`
- `Yi-6B-Chat`
- `Yi-6B-Chat-4bits`
- `Yi-6B-Chat-8bits`
You can try some of them interactively at:
- [Hugging Face](https://huggingface.co/spaces/01-ai/Yi-34B-Chat)
- [Replicate](https://replicate.com/01-ai)
</details>
<details>
<summary>🔔 <b>2023/11/23</b>: The Yi Series Models Community License Agreement is updated to v2.1.</summary>
</details>
<details>
<summary>🔥 <b>2023/11/08</b>: Invited test of Yi-34B chat model.</summary>
Application form:
- [English](https://cn.mikecrm.com/l91ODJf)
- [Chinese](https://cn.mikecrm.com/gnEZjiQ)
</details>
<details>
<summary>🎯 <b>2023/11/05</b>: The base model of <code>Yi-6B-200K</code> and <code>Yi-34B-200K</code>.</summary>
This release contains two base models with the same parameter sizes as the previous
release, except that the context window is extended to 200K.
</details>
<details>
<summary>🎯 <b>2023/11/02</b>: The base model of <code>Yi-6B</code> and <code>Yi-34B</code>.</summary>
The first public release contains two bilingual (English/Chinese) base models
with the parameter sizes of 6B and 34B. Both of them are trained with 4K
sequence length and can be extended to 32K during inference time.
</details>
<div align="right"> [ <a href="#building-the-next-generation-of-open-source-and-bilingual-llms">Back to top ⬆️ </a> ] </div>
# 🟢 How to use Yi?
- [Quick start](#quick-start)
- [Choose your path](#choose-your-parth)
- [pip](#pip)
- [llama.cpp](https://github.com/01-ai/Yi/blob/main/docs/yi_llama.cpp.md)
- [Web demo](#web-demo)
- [Fine tune](#fine-tune)
- [Quantization](#quantization)
- [Deployment](https://github.com/01-ai/Yi/blob/main/docs/deployment.md)
- [Learning hub](https://github.com/01-ai/Yi/blob/main/docs/learning_hub.md)
## Quick start
Getting up and running with Yi models is simple with multiple choices available.
### Choose your path
Select one of the following paths to begin your journey with Yi!
![Quick start - Choose your path](./assets/img/quick_start_path.png)
#### 🎯 Deploy Yi locally
If you prefer to deploy Yi models locally,
- 🙋♀️ and you have **sufficient** resources (for example, NVIDIA A800 80GB), you can choose one of the following methods:
- [pip](#pip)
- [Docker](https://github.com/01-ai/Yi/blob/main/docs/README_legacy.md#11-docker)
- [conda-lock](https://github.com/01-ai/Yi/blob/main/docs/README_legacy.md#12-local-development-environment)
- 🙋♀️ and you have **limited** resources (for example, a MacBook Pro), you can use [llama.cpp](https://github.com/01-ai/Yi/blob/main/docs/yi_llama.cpp.md).
#### 🎯 Not to deploy Yi locally
If you prefer not to deploy Yi models locally, you can explore Yi's capabilities using any of the following options.
##### 🙋♀️ Run Yi with APIs
If you want to explore more features of Yi, you can adopt one of these methods:
- Yi APIs (Yi official)
- [Early access has been granted](https://x.com/01AI_Yi/status/1735728934560600536?s=20) to some applicants. Stay tuned for the next round of access!
- [Yi APIs](https://replicate.com/01-ai/yi-34b-chat/api?tab=nodejs) (Replicate)
##### 🙋♀️ Run Yi in playground
If you want to chat with Yi with more customizable options (e.g., system prompt, temperature, repetition penalty, etc.), you can try one of the following options:
- [Yi-34B-Chat-Playground](https://platform.lingyiwanwu.com/prompt/playground) (Yi official)
- Access is available through a whitelist. Welcome to apply (fill out a form in [English](https://cn.mikecrm.com/l91ODJf) or [Chinese](https://cn.mikecrm.com/gnEZjiQ)).
- [Yi-34B-Chat-Playground](https://replicate.com/01-ai/yi-34b-chat) (Replicate)
##### 🙋♀️ Chat with Yi
If you want to chat with Yi, you can use one of these online services, which offer a similar user experience:
- [Yi-34B-Chat](https://huggingface.co/spaces/01-ai/Yi-34B-Chat) (Yi official on Hugging Face)
- No registration is required.
- [Yi-34B-Chat](https://platform.lingyiwanwu.com/) (Yi official beta)
- Access is available through a whitelist. Welcome to apply (fill out a form in [English](https://cn.mikecrm.com/l91ODJf) or [Chinese](https://cn.mikecrm.com/gnEZjiQ)).
### pip
This tutorial guides you through every step of running **Yi-34B-Chat locally on an A800 (80G)** and then performing inference.
#### Step 0: Prerequistes
- Make sure Python 3.10 or later version is installed.
- If you want to run other Yi models, see [software and hardware requirements](https://github.com/01-ai/Yi/blob/main/docs/deployment.md).
#### Step 1: Prepare your environment
To set up the environment and install the required packages, execute the following command.
```bash
git clone https://github.com/01-ai/Yi.git
cd yi
pip install -r requirements.txt
```
#### Step 2: Download the Yi model
You can download the weights and tokenizer of Yi models from the following sources:
- [Hugging Face](https://huggingface.co/01-ai)
- [ModelScope](https://www.modelscope.cn/organization/01ai/)
- [WiseModel](https://wisemodel.cn/organization/01.AI)
#### Step 3: Perform inference
You can perform inference with Yi chat or base models as below.
##### Perform inference with Yi chat model
1. Create a file named `quick_start.py` and copy the following content to it.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = '<your-model-path>'
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
# Since transformers 4.35.0, the GPT-Q/AWQ model can be loaded using AutoModelForCausalLM.
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "hi"
messages = [
{"role": "user", "content": "hi"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response: "Hello! How can I assist you today?"
print(response)
```
2. Run `quick_start.py`.
```bash
python quick_start.py
```
Then you can see an output similar to the one below. 🥳
```bash
Hello! How can I assist you today?
```
##### Perform inference with Yi base model
The steps are similar to [pip - Perform inference with Yi chat model](#perform-inference-with-yi-chat-model).
You can use the existing file [`text_generation.py`](https://github.com/01-ai/Yi/tree/main/demo).
```bash
python demo/text_generation.py --model <your-model-path>
```
Then you can see an output similar to the one below. 🥳
<details>
<summary>Output</summary>
<br>
**Prompt**: Let me tell you an interesting story about cat Tom and mouse Jerry,
**Generation**: Let me tell you an interesting story about cat Tom and mouse Jerry, which happened in my childhood. My father had a big house with two cats living inside it to kill mice. One day when I was playing at home alone, I found one of the tomcats lying on his back near our kitchen door, looking very much like he wanted something from us but couldn’t get up because there were too many people around him! He kept trying for several minutes before finally giving up...
</details>
### Docker
This tutorial guides you through every step of running **Yi-34B-Chat on an A800 GPU** locally and then performing inference.
#### Step 0: Prerequistes
- Make sure you've installed [Docker](https://docs.docker.com/engine/install/?open_in_browser=true) and [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html).
#### Step 1: Start Docker
```bash
docker run -it --gpus all \
-v <your-model-path>: /models
ghcr.io/01-ai/yi:latest
```
Alternatively, you can pull the Yi Docker image from `registry.lingyiwanwu.com/ci/01-ai/yi:latest`.
#### Step 2: Perform inference
You can perform inference with Yi chat or base models as below.
##### Perform inference with Yi chat model
The steps are similar to [pip - Perform inference with Yi chat model](#perform-inference-with-yi-chat-model).
**Note** that the only difference is to set `model_path = '<your-model-mount-path>'` instead of `model_path = '<your-model-path>'`.
##### Perform inference with Yi base model
The steps are similar to [pip - Perform inference with Yi base model](#perform-inference-with-yi-base-model).
**Note** that the only difference is to set `--model <your-model-mount-path>'` instead of `model <your-model-path>`.
### Run Yi with llama.cpp
If you have limited resources, you can try [llama.cpp](https://github.com/ggerganov/llama.cpp) or [ollama.cpp](https://ollama.ai/) (especially for Chinese users) to run Yi models in a few minutes locally.
For a step-by-step tutorial, see [Run Yi with llama.cpp](https://github.com/01-ai/Yi/edit/main/docs/yi_llama.cpp.md).
### Web demo
You can build a web UI demo for Yi **chat** models (note that Yi base models are not supported in this senario).
[Step 1: Prepare your environment](#step-1-prepare-your-environment).
[Step 2: Download the Yi model](#step-2-download-the-yi-model).
Step 3. To start a web service locally, run the following command.
```bash
python demo/web_demo.py -c <your-model-path>
```
You can access the web UI by entering the address provided in the console into your browser.
![Quick start - web demo](./assets/img/yi_34b_chat_web_demo.gif)
### Finetuning
```bash
bash finetune/scripts/run_sft_Yi_6b.sh
```
Once finished, you can compare the finetuned model and the base model with the following command:
```bash
bash finetune/scripts/run_eval.sh
```
For advanced usage (like fine-tuning based on your custom data), see [fine-tune code for Yi 6B and 34B](https://github.com/01-ai/Yi/tree/main/finetune).
### Quantization
#### GPT-Q
```bash
python quantization/gptq/quant_autogptq.py \
--model /base_model \
--output_dir /quantized_model \
--trust_remote_code
```
Once finished, you can then evaluate the resulting model as follows:
```bash
python quantization/gptq/eval_quantized_model.py \
--model /quantized_model \
--trust_remote_code
```
For a more detailed explanation, please read the [doc](https://github.com/01-ai/Yi/tree/main/quantization/gptq)
#### AWQ
```bash
python quantization/awq/quant_autoawq.py \
--model /base_model \
--output_dir /quantized_model \
--trust_remote_code
```
Once finished, you can then evaluate the resulting model as follows:
```bash
python quantization/awq/eval_quantized_model.py \
--model /quantized_model \
--trust_remote_code
```
For detailed explanations, see [AWQ quantization](https://github.com/01-ai/Yi/tree/main/quantization/awq).
<div align="right"> [ <a href="#building-the-next-generation-of-open-source-and-bilingual-llms">Back to top ⬆️ </a> ] </div>
# 🟢 Why Yi?
- [🌎 Ecosystem](#-ecosystem)
- [💦 Upstream](#-upstream)
- [🌊 Downstream](#-downstream)
- [🔗 Serving](#-serving)
- [⚙️ Quantitation](#️-quantitation)
- [🛠️ Fine-tuning](#️-fine-tuning)
- [API](#api)
- [📌 Benchmarks](#-benchmarks)
- [📊 Base model performance](#-base-model-performance)
- [📊 Chat model performance](#-chat-model-performance)
- [📊 Quantized chat model performance](#-quantized-chat-model-performance)
## 🌎 Ecosystem
Yi has a comprehensive ecosystem, offering a range of tools, services, and models to enrich your experiences and maximize productivity.
- [💦 Upstream](#-upstream)
- [🌊 Downstream](#-downstream)
- [🔗 Serving](#-serving)
- [⚙️ Quantitation](#️-quantitation)
- [🛠️ Fine-tuning](#️-fine-tuning)
- [API](#api)
### 💦 Upstream
The Yi series models follow the same model architecture as LLaMA. By choosing Yi, you can leverage existing tools, libraries, and resources within the LLaMA ecosystem, eliminating the need to create new tools and enhancing development efficiency.
For example, the Yi series models are saved in the format of the LLaMA model. You can directly use `LLaMAForCausalLM` and `LLaMATokenizer` to load the model. For more information, see [Use the chat model](#31-use-the-chat-model).
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("01-ai/Yi-34b", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("01-ai/Yi-34b", device_map="auto")
```
### 🌊 Downstream
> 💡 Tip
>
> - Feel free to create a PR and share the fantastic work you've built using the Yi series models.
>
> - To help others quickly understand your work, it is recommended to use the format of `<model-name>: <model-intro> + <model-highlights>`.
#### 🔗 Serving
If you want to get up with Yi in a few minutes, you can use the following services built upon Yi.
- Yi-34B-Chat: you can chat with Yi using one of the following platforms:
- [Yi-34B-Chat | Hugging Face](https://huggingface.co/spaces/01-ai/Yi-34B-Chat)
- [Yi-34B-Chat | Yi Platform](https://platform.lingyiwanwu.com/): **Note** that currently it's available through a whitelist. Welcome to apply (fill out a form in [English](https://cn.mikecrm.com/l91ODJf) or [Chinese](https://cn.mikecrm.com/gnEZjiQ)) and experience it firsthand!
- [Yi-6B-Chat (Replicate)](https://replicate.com/01-ai): you can use this model with more options by setting additional parameters and calling APIs.
- [ScaleLLM](https://github.com/vectorch-ai/ScaleLLM#supported-models): you can use this service to run Yi models locally with added flexibility and customization.
#### ⚙️ Quantitation
If you have limited computational capabilities, you can use Yi's quantized models as follows.
These quantized models have reduced precision but offer increased efficiency, such as faster inference speed and smaller RAM usage.
- [TheBloke/Yi-34B-GPTQ](https://huggingface.co/TheBloke/Yi-34B-GPTQ)
- [TheBloke/Yi-34B-GGUF](https://huggingface.co/TheBloke/Yi-34B-GGUF)
- [TheBloke/Yi-34B-AWQ](https://huggingface.co/TheBloke/Yi-34B-AWQ)
#### 🛠️ Fine-tuning
If you're seeking to explore the diverse capabilities within Yi's thriving family, you can delve into Yi's fine-tuned models as below.
- [TheBloke Models](https://huggingface.co/TheBloke): this site hosts numerous fine-tuned models derived from various LLMs including Yi.
This is not an exhaustive list for Yi, but to name a few sorted on downloads:
- [TheBloke/dolphin-2_2-yi-34b-AWQ](https://huggingface.co/TheBloke/dolphin-2_2-yi-34b-AWQ)
- [TheBloke/Yi-34B-Chat-AWQ](https://huggingface.co/TheBloke/Yi-34B-Chat-AWQ)
- [TheBloke/Yi-34B-Chat-GPTQ](https://huggingface.co/TheBloke/Yi-34B-Chat-GPTQ)
- [SUSTech/SUS-Chat-34B](https://huggingface.co/SUSTech/SUS-Chat-34B): this model ranked first among all models below 70B and outperformed the twice larger deepseek-llm-67b-chat. You can check the result on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
- [OrionStarAI/OrionStar-Yi-34B-Chat-Llama](https://huggingface.co/OrionStarAI/OrionStar-Yi-34B-Chat-Llama): this model excelled beyond other models (such as GPT-4, Qwen-14B-Chat, Baichuan2-13B-Chat) in C-Eval and CMMLU evaluations on the [OpenCompass LLM Leaderboard](https://opencompass.org.cn/leaderboard-llm).
- [NousResearch/Nous-Capybara-34B](https://huggingface.co/NousResearch/Nous-Capybara-34B): this model is trained with 200K context length and 3 epochs on the Capybara dataset.
#### API
- [amazing-openai-api](https://github.com/soulteary/amazing-openai-api): this tool converts Yi model APIs into the OpenAI API format out of the box.
- [LlamaEdge](https://www.secondstate.io/articles/yi-34b/#create-an-openai-compatible-api-service-for-the-yi-34b-chat-model): this tool builds an OpenAI-compatible API server for Yi-34B-Chat using a portable Wasm (WebAssembly) file, powered by Rust.
<div align="right"> [ <a href="#building-the-next-generation-of-open-source-and-bilingual-llms">Back to top ⬆️ </a> ] </div>
## 📌 Benchmarks
- [📊 Base model performance](#-base-model-performance)
- [📊 Chat model performance](#-chat-model-performance)
- [📊 Quantized chat model performance](#-quantized-chat-model-performance)
### 📊 Base model performance
| Model | MMLU | CMMLU | C-Eval | GAOKAO | BBH | Common-sense Reasoning | Reading Comprehension | Math & Code |
| :------------ | :------: | :------: | :------: | :------: | :------: | :--------------------: | :-------------------: | :---------: |
| | 5-shot | 5-shot | 5-shot | 0-shot | 3-shot@1 | - | - | - |
| LLaMA2-34B | 62.6 | - | - | - | 44.1 | 69.9 | 68.0 | 26.0 |
| LLaMA2-70B | 68.9 | 53.3 | - | 49.8 | 51.2 | 71.9 | 69.4 | 36.8 |
| Baichuan2-13B | 59.2 | 62.0 | 58.1 | 54.3 | 48.8 | 64.3 | 62.4 | 23.0 |
| Qwen-14B | 66.3 | 71.0 | 72.1 | 62.5 | 53.4 | 73.3 | 72.5 | **39.8** |
| Skywork-13B | 62.1 | 61.8 | 60.6 | 68.1 | 41.7 | 72.4 | 61.4 | 24.9 |
| InternLM-20B | 62.1 | 59.0 | 58.8 | 45.5 | 52.5 | 78.3 | - | 30.4 |
| Aquila-34B | 67.8 | 71.4 | 63.1 | - | - | - | - | - |
| Falcon-180B | 70.4 | 58.0 | 57.8 | 59.0 | 54.0 | 77.3 | 68.8 | 34.0 |
| Yi-6B | 63.2 | 75.5 | 72.0 | 72.2 | 42.8 | 72.3 | 68.7 | 19.8 |
| Yi-6B-200K | 64.0 | 75.3 | 73.5 | 73.9 | 42.0 | 72.0 | 69.1 | 19.0 |
| **Yi-34B** | **76.3** | **83.7** | 81.4 | 82.8 | **54.3** | **80.1** | 76.4 | 37.1 |
| Yi-34B-200K | 76.1 | 83.6 | **81.9** | **83.4** | 52.7 | 79.7 | **76.6** | 36.3 |
While benchmarking open-source models, we have observed a disparity between the
results generated by our pipeline and those reported in public sources (e.g.
OpenCompass). Upon conducting a more in-depth investigation of this difference,
we have discovered that various models may employ different prompts,
post-processing strategies, and sampling techniques, potentially resulting in
significant variations in the outcomes. Our prompt and post-processing strategy
remains consistent with the original benchmark, and greedy decoding is employed
during evaluation without any post-processing for the generated content. For
scores that were not reported by the original authors (including scores reported
with different settings), we try to get results with our pipeline.
To evaluate the model's capability extensively, we adopted the methodology
outlined in Llama2. Specifically, we included PIQA, SIQA, HellaSwag, WinoGrande,
ARC, OBQA, and CSQA to assess common sense reasoning. SquAD, QuAC, and BoolQ
were incorporated to evaluate reading comprehension. CSQA was exclusively tested
using a 7-shot setup, while all other tests were conducted with a 0-shot
configuration. Additionally, we introduced GSM8K (8-shot@1), MATH (4-shot@1),
HumanEval (0-shot@1), and MBPP (3-shot@1) under the category "Math & Code". Due
to technical constraints, we did not test Falcon-180 on QuAC and OBQA; the score
is derived by averaging the scores on the remaining tasks. Since the scores for
these two tasks are generally lower than the average, we believe that
Falcon-180B's performance was not underestimated.
### 📊 Chat model performance
| Model | MMLU | MMLU | CMMLU | CMMLU | C-Eval(val)<sup>*</sup> | C-Eval(val)<sup>*</sup> | Truthful QA | BBH | BBH | GSM8k | GSM8k |
| ----------------------- | --------- | --------- | --------- | --------- | ----------------------- | ----------------------- | ----------- | --------- | --------- | --------- | --------- |
| | 0-shot | 5-shot | 0-shot | 5-shot | 0-shot | 5-shot | 0-shot | 0-shot | 3-shot | 0-shot | 4-shot |
| LLaMA2-13B-Chat | 50.88 | 47.33 | 27.47 | 35.08 | 27.93 | 35.88 | 36.84 | 32.90 | 58.22 | 36.85 | 2.73 |
| LLaMA2-70B-Chat | 59.42 | 59.86 | 36.10 | 40.99 | 34.99 | 41.31 | 53.95 | 42.36 | 58.53 | 47.08 | 58.68 |
| Baichuan2-13B-Chat | 55.09 | 50.14 | 58.64 | 59.47 | 56.02 | 54.75 | 48.98 | 38.81 | 47.15 | 45.72 | 23.28 |
| Qwen-14B-Chat | 63.99 | 64.98 | 67.73 | 70.57 | 66.12 | 70.06 | 52.49 | 49.65 | 54.98 | 59.51 | 61.18 |
| InternLM-Chat-20B | 55.55 | 57.42 | 53.55 | 53.75 | 51.19 | 53.57 | 51.75 | 42.41 | 36.68 | 15.69 | 43.44 |
| AquilaChat2-34B v1.2 | 65.15 | 66.70 | 67.51 | 70.02 | **82.99** | **89.38** | **64.33** | 20.12 | 34.28 | 11.52 | 48.45 |
| Yi-6B-Chat | 58.24 | 60.99 | 69.44 | 74.71 | 68.80 | 74.22 | 50.58 | 39.70 | 47.15 | 38.44 | 44.88 |
| Yi-6B-Chat-8bits(GPTQ) | 58.29 | 60.96 | 69.21 | 74.69 | 69.17 | 73.85 | 49.85 | 40.35 | 47.26 | 39.42 | 44.88 |
| Yi-6B-Chat-4bits(AWQ) | 56.78 | 59.89 | 67.70 | 73.29 | 67.53 | 72.29 | 50.29 | 37.74 | 43.62 | 35.71 | 38.36 |
| Yi-34B-Chat | **67.62** | 73.46 | **79.11** | **81.34** | 77.04 | 78.53 | 62.43 | 51.41 | **71.74** | **71.65** | **75.97** |
| Yi-34B-Chat-8bits(GPTQ) | 66.24 | **73.69** | 79.05 | 81.23 | 76.82 | 78.97 | 61.84 | **52.08** | 70.97 | 70.74 | 75.74 |
| Yi-34B-Chat-4bits(AWQ) | 65.77 | 72.42 | 78.21 | 80.50 | 75.71 | 77.27 | 61.84 | 48.30 | 69.39 | 70.51 | 74.00 |
We evaluated various benchmarks using both zero-shot and few-shot methods, except for TruthfulQA. Generally, the zero-shot approach is more common in chat models. Our evaluation strategy involves generating responses while following instructions explicitly or implicitly (such as using few-shot examples). We then isolate relevant answers from the generated text. Some models are not well-suited to produce output in the specific format required by instructions in a few datasets, which leads to suboptimal results.
<strong>*</strong>: C-Eval results are evaluated on the validation datasets
### 📊 Quantized chat model performance
We also provide both 4-bit (AWQ) and 8-bit (GPTQ) quantized Yi chat models. Evaluation results on various benchmarks have shown that the quantized models have **negligible** losses. Additionally, they reduce the memory footprint size.
# 🟢 Who can use Yi?
Everyone! 🙌 ✅
- The Yi series models are free for personal usage, academic purposes, and commercial use. All usage must adhere to the [Yi Series Models Community License Agreement 2.1](https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt)
- For free commercial use, you only need to [complete this form](https://www.lingyiwanwu.com/yi-license) to get a Yi Model Commercial License.
<div align="right"> [ <a href="#building-the-next-generation-of-open-source-and-bilingual-llms">Back to top ⬆️ </a> ] </div>
# 🟢 Misc.
### Acknowledgments
A heartfelt thank you to each of you who have made contributions to the Yi community! You have helped Yi not just a project, but a vibrant, growing home for innovation.
<!---
ref https://github.com/ngryman/contributor-faces
npx contributor-faces --exclude "*bot*" --limit 70 --repo "https://github.com/01-ai/Yi"
change the height and width for each of the contributors from 80 to 50 at ref index.js.
--->
[//]: contributor-faces
<a style="display:inline-block;width=50px;height=50px" href="https://github.com/ZhaoFancy"><img style="margin:0" src="https://avatars.githubusercontent.com/u/139539780?v=4" title="ZhaoFancy" width="50" height="50"></a>
<a style="display:inline-block;width=50px;height=50px" href="https://github.com/Anonymitaet"><img style="margin:0" src="https://avatars.githubusercontent.com/u/50226895?v=4" title="Anonymitaet" width="50" height="50"></a>
<a style="display:inline-block;width=50px;height=50px" href="https://github.com/findmyway"><img style="margin:0" src="https://avatars.githubusercontent.com/u/5612003?v=4" title="findmyway" width="50" height="50"></a>
<a style="display:inline-block;width=50px;height=50px" href="https://github.com/shiyue-loop"><img style="margin:0" src="https://avatars.githubusercontent.com/u/150643331?v=4" title="shiyue-loop" width="50" height="50"></a>
<a style="display:inline-block;width=50px;height=50px" href="https://github.com/richardllin"><img style="margin:0" src="https://avatars.githubusercontent.com/u/1932744?v=4" title="richardllin" width="50" height="50"></a>
<a style="display:inline-block;width=50px;height=50px" href="https://github.com/jiangchengSilent"><img style="margin:0" src="https://avatars.githubusercontent.com/u/143983063?v=4" title="jiangchengSilent" width="50" height="50"></a>
<a style="display:inline-block;width=50px;height=50px" href="https://github.com/loofahcus"><img style="margin:0" src="https://avatars.githubusercontent.com/u/15729967?v=4" title="loofahcus" width="50" height="50"></a>
<a style="display:inline-block;width=50px;height=50px" href="https://github.com/Yimi81"><img style="margin:0" src="https://avatars.githubusercontent.com/u/66633207?v=4" title="Yimi81" width="50" height="50"></a>
<a style="display:inline-block;width=50px;height=50px" href="https://github.com/ly-nld"><img style="margin:0" src="https://avatars.githubusercontent.com/u/38471793?v=4" title="ly-nld" width="50" height="50"></a>
<a style="display:inline-block;width=50px;height=50px" href="https://github.com/WayTooWill"><img style="margin:0" src="https://avatars.githubusercontent.com/u/119883899?v=4" title="WayTooWill" width="50" height="50"></a>
<a style="display:inline-block;width=50px;height=50px" href="https://github.com/kai01ai"><img style="margin:0" src="https://avatars.githubusercontent.com/u/140378742?v=4" title="kai01ai" width="50" height="50"></a>
<a style="display:inline-block;width=50px;height=50px" href="https://github.com/forpanyang"><img style="margin:0" src="https://avatars.githubusercontent.com/u/138085590?v=4" title="forpanyang" width="50" height="50"></a>
<a style="display:inline-block;width=50px;height=50px" href="https://github.com/0x1111"><img style="margin:0" src="https://avatars.githubusercontent.com/u/750392?v=4" title="0x1111" width="50" height="50"></a>
<a style="display:inline-block;width=50px;height=50px" href="https://github.com/angeligareta"><img style="margin:0" src="https://avatars.githubusercontent.com/u/32129522?v=4" title="angeligareta" width="50" height="50"></a>
<a style="display:inline-block;width=50px;height=50px" href="https://github.com/xffxff"><img style="margin:0" src="https://avatars.githubusercontent.com/u/30254428?v=4" title="xffxff" width="50" height="50"></a>
<a style="display:inline-block;width=50px;height=50px" href="https://github.com/tpoisonooo"><img style="margin:0" src="https://avatars.githubusercontent.com/u/7872421?v=4" title="tpoisonooo" width="50" height="50"></a>
<a style="display:inline-block;width=50px;height=50px" href="https://github.com/tdolan21"><img style="margin:0" src="https://avatars.githubusercontent.com/u/40906019?v=4" title="tdolan21" width="50" height="50"></a>
<a style="display:inline-block;width=50px;height=50px" href="https://github.com/statelesshz"><img style="margin:0" src="https://avatars.githubusercontent.com/u/28150734?v=4" title="statelesshz" width="50" height="50"></a>
<a style="display:inline-block;width=50px;height=50px" href="https://github.com/renxiaoyi"><img style="margin:0" src="https://avatars.githubusercontent.com/u/10918916?v=4" title="renxiaoyi" width="50" height="50"></a>
<a style="display:inline-block;width=50px;height=50px" href="https://github.com/markli404"><img style="margin:0" src="https://avatars.githubusercontent.com/u/116385770?v=4" title="markli404" width="50" height="50"></a>
<a style="display:inline-block;width=50px;height=50px" href="https://github.com/fecet"><img style="margin:0" src="https://avatars.githubusercontent.com/u/41792945?v=4" title="fecet" width="50" height="50"></a>
<a style="display:inline-block;width=50px;height=50px" href="https://github.com/cArlIcon"><img style="margin:0" src="https://avatars.githubusercontent.com/u/7384654?v=4" title="cArlIcon" width="50" height="50"></a>
<a style="display:inline-block;width=50px;height=50px" href="https://github.com/alabulei1"><img style="margin:0" src="https://avatars.githubusercontent.com/u/45785633?v=4" title="alabulei1" width="50" height="50"></a>
<a style="display:inline-block;width=50px;height=50px" href="https://github.com/eltociear"><img style="margin:0" src="https://avatars.githubusercontent.com/u/22633385?v=4" title="eltociear" width="50" height="50"></a>
<a style="display:inline-block;width=50px;height=50px" href="https://github.com/Gmgge"><img style="margin:0" src="https://avatars.githubusercontent.com/u/48548141?v=4" title="Gmgge" width="50" height="50"></a>
[//]: contributor-faces
<div align="right"> [ <a href="#building-the-next-generation-of-open-source-and-bilingual-llms">Back to top ⬆️ </a> ] </div>
### 📡 Disclaimer
We use data compliance checking algorithms during the training process, to
ensure the compliance of the trained model to the best of our ability. Due to
complex data and the diversity of language model usage scenarios, we cannot
guarantee that the model will generate correct, and reasonable output in all
scenarios. Please be aware that there is still a risk of the model producing
problematic outputs. We will not be responsible for any risks and issues
resulting from misuse, misguidance, illegal usage, and related misinformation,
as well as any associated data security concerns.
<div align="right"> [ <a href="#building-the-next-generation-of-open-source-and-bilingual-llms">Back to top ⬆️ </a> ] </div>
### 🪪 License
The source code in this repo is licensed under the [Apache 2.0
license](https://github.com/01-ai/Yi/blob/main/LICENSE). The Yi series models
are fully open for academic research and free commercial usage with permission
via applications. All usage must adhere to the [Yi Series Models Community License Agreement 2.1](https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt).
For free commercial use, you only need to send an email to [get official commercial permission](https://www.lingyiwanwu.com/yi-license).
<div align="right"> [ <a href="#building-the-next-generation-of-open-source-and-bilingual-llms">Back to top ⬆️ </a> ] </div>
|