yi-01-ai
commited on
Commit
·
0c19f1e
1
Parent(s):
4e1b9ac
Auto Sync from git://github.com/01-ai/Yi.git/commit/6161f43679e3887a500a4f00aec3cb3090e3a23a
Browse files
README.md
CHANGED
@@ -154,7 +154,7 @@ pipeline_tag: text-generation
|
|
154 |
<details open>
|
155 |
<summary>🔔 <b>2024-03-07</b>: The long text capability of the Yi-34B-200K has been enhanced. </summary>
|
156 |
<br>
|
157 |
-
In the "Needle-in-a-Haystack" test, the Yi-34B-200K's performance is improved by 10.5%, rising from 89.3% to an impressive 99.8%. We continue pretrain the model on 5B tokens long-context data mixture and
|
158 |
</details>
|
159 |
|
160 |
<details open>
|
@@ -944,13 +944,13 @@ Before deploying Yi in your environment, make sure your hardware meets the follo
|
|
944 |
##### Chat models
|
945 |
|
946 |
| Model | Minimum VRAM | Recommended GPU Example |
|
947 |
-
|
948 |
-
| Yi-6B-Chat | 15 GB | 1 x RTX 3090 <br> 1 x RTX 4090 <br> A10 <br> A30
|
949 |
-
| Yi-6B-Chat-4bits | 4 GB | 1 x RTX 3060 <br>
|
950 |
-
| Yi-6B-Chat-8bits | 8 GB | 1 x RTX 3070 <br> 1 x RTX 4060
|
951 |
-
| Yi-34B-Chat | 72 GB | 4 x RTX 4090 <br> A800 (80GB) |
|
952 |
-
| Yi-34B-Chat-4bits | 20 GB | 1 x RTX 3090
|
953 |
-
| Yi-34B-Chat-8bits | 38 GB | 2 x RTX 3090
|
954 |
|
955 |
Below are detailed minimum VRAM requirements under different batch use cases.
|
956 |
|
@@ -967,10 +967,10 @@ Below are detailed minimum VRAM requirements under different batch use cases.
|
|
967 |
|
968 |
| Model | Minimum VRAM | Recommended GPU Example |
|
969 |
|----------------------|--------------|:-------------------------------------:|
|
970 |
-
| Yi-6B | 15 GB | 1 x RTX 3090 <br> 1 x RTX 4090 <br> A10 <br> A30
|
971 |
-
| Yi-6B-200K | 50 GB | A800 (80 GB) |
|
972 |
| Yi-9B | 20 GB | 1 x RTX 4090 (24 GB) |
|
973 |
-
| Yi-34B | 72 GB | 4 x RTX 4090 <br> A800 (80 GB) |
|
974 |
| Yi-34B-200K | 200 GB | 4 x A800 (80 GB) |
|
975 |
|
976 |
<p align="right"> [
|
|
|
154 |
<details open>
|
155 |
<summary>🔔 <b>2024-03-07</b>: The long text capability of the Yi-34B-200K has been enhanced. </summary>
|
156 |
<br>
|
157 |
+
In the "Needle-in-a-Haystack" test, the Yi-34B-200K's performance is improved by 10.5%, rising from 89.3% to an impressive 99.8%. We continue to pretrain the model on 5B tokens long-context data mixture and demonstrate a near-all-green performance.
|
158 |
</details>
|
159 |
|
160 |
<details open>
|
|
|
944 |
##### Chat models
|
945 |
|
946 |
| Model | Minimum VRAM | Recommended GPU Example |
|
947 |
+
|:----------------------|:--------------|:-------------------------------------:|
|
948 |
+
| Yi-6B-Chat | 15 GB | 1 x RTX 3090 (24 GB) <br> 1 x RTX 4090 (24 GB) <br> 1 x A10 (24 GB) <br> 1 x A30 (24 GB) |
|
949 |
+
| Yi-6B-Chat-4bits | 4 GB | 1 x RTX 3060 (12 GB)<br> 1 x RTX 4060 (8 GB) |
|
950 |
+
| Yi-6B-Chat-8bits | 8 GB | 1 x RTX 3070 (8 GB) <br> 1 x RTX 4060 (8 GB) |
|
951 |
+
| Yi-34B-Chat | 72 GB | 4 x RTX 4090 (24 GB)<br> 1 x A800 (80GB) |
|
952 |
+
| Yi-34B-Chat-4bits | 20 GB | 1 x RTX 3090 (24 GB) <br> 1 x RTX 4090 (24 GB) <br> 1 x A10 (24 GB) <br> 1 x A30 (24 GB) <br> 1 x A100 (40 GB) |
|
953 |
+
| Yi-34B-Chat-8bits | 38 GB | 2 x RTX 3090 (24 GB) <br> 2 x RTX 4090 (24 GB)<br> 1 x A800 (40 GB) |
|
954 |
|
955 |
Below are detailed minimum VRAM requirements under different batch use cases.
|
956 |
|
|
|
967 |
|
968 |
| Model | Minimum VRAM | Recommended GPU Example |
|
969 |
|----------------------|--------------|:-------------------------------------:|
|
970 |
+
| Yi-6B | 15 GB | 1 x RTX 3090 (24 GB) <br> 1 x RTX 4090 (24 GB) <br> 1 x A10 (24 GB) <br> 1 x A30 (24 GB) |
|
971 |
+
| Yi-6B-200K | 50 GB | 1 x A800 (80 GB) |
|
972 |
| Yi-9B | 20 GB | 1 x RTX 4090 (24 GB) |
|
973 |
+
| Yi-34B | 72 GB | 4 x RTX 4090 (24 GB) <br> 1 x A800 (80 GB) |
|
974 |
| Yi-34B-200K | 200 GB | 4 x A800 (80 GB) |
|
975 |
|
976 |
<p align="right"> [
|