Yi-34B / README.md
Anonymous
correct link
853a6bd
|
raw
history blame
5 kB
metadata
license: other
license_name: yi-license
license_link: LICENSE

Introduction

The Yi series models are large language models trained from scratch by developers at 01.AI. The first public release contains two bilingual(English/Chinese) base models with the parameter sizes of 6B and 34B. Both of them are trained with 4K sequence length and can be extended to 32K during inference time.

News

  • 🎯 2023/11/02: The base model of Yi-6B and Yi-34B.

Model Performance

Model MMLU CMMLU C-Eval GAOKAO BBH Common-sense Reasoning Reading Comprehension Math & Code
5-shot 5-shot 5-shot 0-shot 3-shot@1 - - -
LLaMA2-34B 62.6 - - - 44.1 69.9 68.0 26.0
LLaMA2-70B 68.9 53.3 - 49.8 51.2 71.9 69.4 36.8
Baichuan2-13B 59.2 62.0 58.1 54.3 48.8 64.3 62.4 23.0
Qwen-14B 66.3 71.0 72.1 62.5 53.4 73.3 72.5 39.8
Skywork-13B 62.1 61.8 60.6 68.1 41.7 72.4 61.4 24.9
InternLM-20B 62.1 59.0 58.8 45.5 52.5 78.3 - 30.4
Aquila-34B 67.8 71.4 63.1 - - - - -
Falcon-180B 70.4 58.0 57.8 59.0 54.0 77.3 68.8 34.0
Yi-6B 63.2 75.5 72.0 72.2 42.8 72.3 68.7 19.8
Yi-34B 76.3 83.7 81.4 82.8 54.3 80.1 76.4 37.1

While benchmarking open-source models, we have observed a disparity between the results generated by our pipeline and those reported in public sources (e.g. OpenCompass). Upon conducting a more in-depth investigation of this difference, we have discovered that various models may employ different prompts, post-processing strategies, and sampling techniques, potentially resulting in significant variations in the outcomes. Our prompt and post-processing strategy remains consistent with the original benchmark, and greedy decoding is employed during evaluation without any post-processing for the generated content. For scores that were not reported by the original authors (including scores reported with different settings), we try to get results with our pipeline.

To evaluate the model's capability extensively, we adopted the methodology outlined in Llama2. Specifically, we included PIQA, SIQA, HellaSwag, WinoGrande, ARC, OBQA, and CSQA to assess common sense reasoning. SquAD, QuAC, and BoolQ were incorporated to evaluate reading comprehension. CSQA was exclusively tested using a 7-shot setup, while all other tests were conducted with a 0-shot configuration. Additionally, we introduced GSM8K (8-shot@1), MATH (4-shot@1), HumanEval (0-shot@1), and MBPP (3-shot@1) under the category "Math & Code". Due to technical constraints, we did not test Falcon-180 on QuAC and OBQA; the score is derived by averaging the scores on the remaining tasks. Since the scores for these two tasks are generally lower than the average, we believe that Falcon-180B's performance was not underestimated.

Usage

Please visit our github repository for general guidance on how to use this model.

Disclaimer

Although we use data compliance checking algorithms during the training process to ensure the compliance of the trained model to the best of our ability, due to the complexity of the data and the diversity of language model usage scenarios, we cannot guarantee that the model will generate correct and reasonable output in all scenarios. Please be aware that there is still a risk of the model producing problematic outputs. We will not be responsible for any risks and issues resulting from misuse, misguidance, illegal usage, and related misinformation, as well as any associated data security concerns.

License

The Yi series models are fully open for academic research and free commercial usage. All usage must be adhered to the Model License Agreement. To apply for the official commercial license, please contact us (yi@01.ai).