--- tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: finetuned-twitter-xlm-roberta-base-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9305 - name: F1 type: f1 value: 0.9306713707413102 --- # finetuned-twitter-xlm-roberta-base-emotion This model is a fine-tuned version of [cardiffnlp/twitter-xlm-roberta-base](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1793 - Accuracy: 0.9305 - F1: 0.9307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2