02shanky commited on
Commit
faa0b5f
1 Parent(s): 9519d25

End of training

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: 02shanky/vit-finetuned-cifar10
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - cifar10
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: vit-finetuned-vanilla-cifar10-0
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: cifar10
18
+ type: cifar10
19
+ config: plain_text
20
+ split: train
21
+ args: plain_text
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.9911111111111112
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # vit-finetuned-vanilla-cifar10-0
32
+
33
+ This model is a fine-tuned version of [02shanky/vit-finetuned-cifar10](https://huggingface.co/02shanky/vit-finetuned-cifar10) on the cifar10 dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.0336
36
+ - Accuracy: 0.9911
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 0.0001
56
+ - train_batch_size: 16
57
+ - eval_batch_size: 16
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 64
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - num_epochs: 2
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 0.306 | 1.0 | 633 | 0.0478 | 0.986 |
70
+ | 0.2268 | 2.0 | 1266 | 0.0336 | 0.9911 |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - Transformers 4.34.1
76
+ - Pytorch 2.1.0+cu118
77
+ - Datasets 2.14.6
78
+ - Tokenizers 0.14.1