0x7o commited on
Commit
f3db973
1 Parent(s): 2b8c66d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -15
README.md CHANGED
@@ -9,13 +9,11 @@ tags:
9
  - lora
10
  inference: true
11
  base_model: stabilityai/stable-diffusion-xl-base-1.0
 
 
12
  ---
13
 
14
- <!-- This model card has been generated automatically according to the information the training script had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
-
17
-
18
- # LoRA text2image fine-tuning - 0x7o/RussianVibe-XL-v2.0
19
 
20
  These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were fine-tuned on the 0x7o/RussianVibe-data dataset. You can find some example images in the following.
21
 
@@ -35,13 +33,13 @@ Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
35
  #### How to use
36
 
37
  ```python
38
- # TODO: add an example code snippet for running this diffusion pipeline
39
- ```
40
-
41
- #### Limitations and bias
42
-
43
- [TODO: provide examples of latent issues and potential remediations]
44
-
45
- ## Training details
46
-
47
- [TODO: describe the data used to train the model]
 
9
  - lora
10
  inference: true
11
  base_model: stabilityai/stable-diffusion-xl-base-1.0
12
+ datasets:
13
+ - 0x7o/RussianVibe-data
14
  ---
15
 
16
+ # RussianVibe XL v2.0
 
 
 
 
17
 
18
  These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were fine-tuned on the 0x7o/RussianVibe-data dataset. You can find some example images in the following.
19
 
 
33
  #### How to use
34
 
35
  ```python
36
+ from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
37
+ import torch
38
+ pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
39
+ pipe.load_lora_weights("0x7o/RussianVibe-XL-v2.0")
40
+ pipe.to("cuda")
41
+ pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
42
+ prompt = "The sun is setting through a window, casting a warm glow on the cityscape beyond. The sun casts a warm orange glow on the buildings in the distance, creating a beautiful and serene atmosphere."
43
+ image = pipe(prompt, num_inference_steps=30, guidance_scale=5.0, negative_prompt="bad quality, painting, art").images[0]
44
+ image.save("output.png")
45
+ ```