Update README.md
Browse files
README.md
CHANGED
@@ -8,6 +8,163 @@ tags:
|
|
8 |
- owkin
|
9 |
- histology
|
10 |
library_name: timm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
widget:
|
12 |
- src: https://github.com/owkin/HistoSSLscaling/raw/main/assets/example.tif
|
13 |
example_title: pancancer tile
|
@@ -20,6 +177,12 @@ co2_eq_emissions:
|
|
20 |
license: other
|
21 |
pipeline_tag: feature-extraction
|
22 |
inference: false
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
---
|
24 |
|
25 |
# Model card for vit_base_patch16_224.owkin_pancancer
|
@@ -27,6 +190,8 @@ inference: false
|
|
27 |
A Vision Transformer (ViT) image classification model. \
|
28 |
Trained by Owkin on 40M pan-cancer histology tiles from TCGA.
|
29 |
|
|
|
|
|
30 |
## Model Details
|
31 |
|
32 |
- **Model Type:** Image classification / feature backbone
|
|
|
8 |
- owkin
|
9 |
- histology
|
10 |
library_name: timm
|
11 |
+
model-index:
|
12 |
+
- name: owkin_pancancer
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
type: image-classification
|
16 |
+
name: Image Classification
|
17 |
+
dataset:
|
18 |
+
name: Camelyon16[Meta]
|
19 |
+
type: image-classification
|
20 |
+
metrics:
|
21 |
+
- type: accuracy
|
22 |
+
value: 94.5 ± 4.4
|
23 |
+
name: ROC AUC
|
24 |
+
verified: false
|
25 |
+
- task:
|
26 |
+
type: image-classification
|
27 |
+
name: Image Classification
|
28 |
+
dataset:
|
29 |
+
name: TCGA-BRCA[Hist]
|
30 |
+
type: image-classification
|
31 |
+
metrics:
|
32 |
+
- type: accuracy
|
33 |
+
value: 96.2 ± 3.3
|
34 |
+
name: ROC AUC
|
35 |
+
verified: false
|
36 |
+
- task:
|
37 |
+
type: image-classification
|
38 |
+
name: Image Classification
|
39 |
+
dataset:
|
40 |
+
name: TCGA-BRCA[HRD]
|
41 |
+
type: image-classification
|
42 |
+
metrics:
|
43 |
+
- type: accuracy
|
44 |
+
value: 79.3 ± 2.4
|
45 |
+
name: ROC AUC
|
46 |
+
verified: false
|
47 |
+
- task:
|
48 |
+
type: image-classification
|
49 |
+
name: Image Classification
|
50 |
+
dataset:
|
51 |
+
name: TCGA-BRCA[Mol]
|
52 |
+
type: image-classification
|
53 |
+
metrics:
|
54 |
+
- type: accuracy
|
55 |
+
value: 81.7 ± 1.6
|
56 |
+
name: ROC AUC
|
57 |
+
verified: false
|
58 |
+
- task:
|
59 |
+
type: image-classification
|
60 |
+
name: Image Classification
|
61 |
+
dataset:
|
62 |
+
name: TCGA-BRCA[OS]
|
63 |
+
type: image-classification
|
64 |
+
metrics:
|
65 |
+
- type: accuracy
|
66 |
+
value: 64.7 ± 5.7
|
67 |
+
name: ROC AUC
|
68 |
+
verified: false
|
69 |
+
- task:
|
70 |
+
type: image-classification
|
71 |
+
name: Image Classification
|
72 |
+
dataset:
|
73 |
+
name: TCGA-CRC[MSI]
|
74 |
+
type: image-classification
|
75 |
+
metrics:
|
76 |
+
- type: accuracy
|
77 |
+
value: 91.0 ± 2.2
|
78 |
+
name: ROC AUC
|
79 |
+
verified: false
|
80 |
+
- task:
|
81 |
+
type: image-classification
|
82 |
+
name: Image Classification
|
83 |
+
dataset:
|
84 |
+
name: TCGA-COAD[OS]
|
85 |
+
type: image-classification
|
86 |
+
metrics:
|
87 |
+
- type: accuracy
|
88 |
+
value: 63.4 ± 7.4
|
89 |
+
name: ROC AUC
|
90 |
+
verified: false
|
91 |
+
- task:
|
92 |
+
type: image-classification
|
93 |
+
name: Image Classification
|
94 |
+
dataset:
|
95 |
+
name: TCGA-NSCLC[CType]
|
96 |
+
type: image-classification
|
97 |
+
metrics:
|
98 |
+
- type: accuracy
|
99 |
+
value: 97.7 ± 1.3
|
100 |
+
name: ROC AUC
|
101 |
+
verified: false
|
102 |
+
- task:
|
103 |
+
type: image-classification
|
104 |
+
name: Image Classification
|
105 |
+
dataset:
|
106 |
+
name: TCGA-LUAD[OS]
|
107 |
+
type: image-classification
|
108 |
+
metrics:
|
109 |
+
- type: accuracy
|
110 |
+
value: 53.8 ± 4.5
|
111 |
+
name: ROC AUC
|
112 |
+
verified: false
|
113 |
+
- task:
|
114 |
+
type: image-classification
|
115 |
+
name: Image Classification
|
116 |
+
dataset:
|
117 |
+
name: TCGA-LUSC[OS]
|
118 |
+
type: image-classification
|
119 |
+
metrics:
|
120 |
+
- type: accuracy
|
121 |
+
value: 62.2 ± 2.9
|
122 |
+
name: ROC AUC
|
123 |
+
verified: false
|
124 |
+
- task:
|
125 |
+
type: image-classification
|
126 |
+
name: Image Classification
|
127 |
+
dataset:
|
128 |
+
name: TCGA-OV[HRD]
|
129 |
+
type: image-classification
|
130 |
+
metrics:
|
131 |
+
- type: accuracy
|
132 |
+
value: 74.2± 8.6
|
133 |
+
name: ROC AUC
|
134 |
+
verified: false
|
135 |
+
- task:
|
136 |
+
type: image-classification
|
137 |
+
name: Image Classification
|
138 |
+
dataset:
|
139 |
+
name: TCGA-RCC[CType]
|
140 |
+
type: image-classification
|
141 |
+
metrics:
|
142 |
+
- type: accuracy
|
143 |
+
value: 99.5 ± 0.2
|
144 |
+
name: ROC AUC
|
145 |
+
verified: false
|
146 |
+
- task:
|
147 |
+
type: image-classification
|
148 |
+
name: Image Classification
|
149 |
+
dataset:
|
150 |
+
name: TCGA-STAD[MSI]
|
151 |
+
type: image-classification
|
152 |
+
metrics:
|
153 |
+
- type: accuracy
|
154 |
+
value: 89.9 ± 3.9
|
155 |
+
name: ROC AUC
|
156 |
+
verified: false
|
157 |
+
- task:
|
158 |
+
type: image-classification
|
159 |
+
name: Image Classification
|
160 |
+
dataset:
|
161 |
+
name: TCGA-PAAD[OS]
|
162 |
+
type: image-classification
|
163 |
+
metrics:
|
164 |
+
- type: accuracy
|
165 |
+
value: 59.2 ± 4.1
|
166 |
+
name: ROC AUC
|
167 |
+
verified: false
|
168 |
widget:
|
169 |
- src: https://github.com/owkin/HistoSSLscaling/raw/main/assets/example.tif
|
170 |
example_title: pancancer tile
|
|
|
177 |
license: other
|
178 |
pipeline_tag: feature-extraction
|
179 |
inference: false
|
180 |
+
datasets:
|
181 |
+
- owkin/camelyon16-features
|
182 |
+
- owkin/nct-crc-he
|
183 |
+
- 1aurent/NCT-CRC-HE
|
184 |
+
metrics:
|
185 |
+
- roc_auc
|
186 |
---
|
187 |
|
188 |
# Model card for vit_base_patch16_224.owkin_pancancer
|
|
|
190 |
A Vision Transformer (ViT) image classification model. \
|
191 |
Trained by Owkin on 40M pan-cancer histology tiles from TCGA.
|
192 |
|
193 |
+
![](https://github.com/owkin/HistoSSLscaling/blob/main/assets/main_figure.png?raw=true)
|
194 |
+
|
195 |
## Model Details
|
196 |
|
197 |
- **Model Type:** Image classification / feature backbone
|