khang119966
commited on
Update processing_colinternvl2.py
Browse files- processing_colinternvl2.py +58 -0
processing_colinternvl2.py
CHANGED
@@ -16,6 +16,25 @@ from transformers import AutoModel, AutoTokenizer
|
|
16 |
from .conversation import get_conv_template
|
17 |
from transformers import BatchFeature, ProcessorMixin
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
class ColInternVL2Processor(BaseVisualRetrieverProcessor, ProcessorMixin):
|
20 |
"""
|
21 |
Processor for ColInternVL2.
|
@@ -205,3 +224,42 @@ class ColInternVL2Processor(BaseVisualRetrieverProcessor, ProcessorMixin):
|
|
205 |
patch_size: int,
|
206 |
) -> Tuple[int, int]:
|
207 |
raise NotImplementedError("This method is not implemented for ColInternVL2.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
from .conversation import get_conv_template
|
17 |
from transformers import BatchFeature, ProcessorMixin
|
18 |
|
19 |
+
def get_torch_device(device: str = "auto") -> str:
|
20 |
+
"""
|
21 |
+
Returns the device (string) to be used by PyTorch.
|
22 |
+
|
23 |
+
`device` arg defaults to "auto" which will use:
|
24 |
+
- "cuda:0" if available
|
25 |
+
- else "mps" if available
|
26 |
+
- else "cpu".
|
27 |
+
"""
|
28 |
+
|
29 |
+
if device == "auto":
|
30 |
+
if torch.cuda.is_available():
|
31 |
+
device = "cuda:0"
|
32 |
+
elif torch.backends.mps.is_available(): # for Apple Silicon
|
33 |
+
device = "mps"
|
34 |
+
else:
|
35 |
+
device = "cpu"
|
36 |
+
return device
|
37 |
+
|
38 |
class ColInternVL2Processor(BaseVisualRetrieverProcessor, ProcessorMixin):
|
39 |
"""
|
40 |
Processor for ColInternVL2.
|
|
|
224 |
patch_size: int,
|
225 |
) -> Tuple[int, int]:
|
226 |
raise NotImplementedError("This method is not implemented for ColInternVL2.")
|
227 |
+
|
228 |
+
def score_multi_vector(
|
229 |
+
self,
|
230 |
+
qs: List[torch.Tensor],
|
231 |
+
ps: List[torch.Tensor],
|
232 |
+
batch_size: int = 128,
|
233 |
+
device: Optional[Union[str, torch.device]] = None,
|
234 |
+
) -> torch.Tensor:
|
235 |
+
"""
|
236 |
+
Compute the MaxSim score (ColBERT-like) for the given multi-vector query and passage embeddings.
|
237 |
+
"""
|
238 |
+
device = device or get_torch_device("auto")
|
239 |
+
|
240 |
+
if len(qs) == 0:
|
241 |
+
raise ValueError("No queries provided")
|
242 |
+
if len(ps) == 0:
|
243 |
+
raise ValueError("No passages provided")
|
244 |
+
|
245 |
+
scores_list: List[torch.Tensor] = []
|
246 |
+
|
247 |
+
for i in range(0, len(qs), batch_size):
|
248 |
+
scores_batch = []
|
249 |
+
qs_batch = torch.nn.utils.rnn.pad_sequence(qs[i : i + batch_size], batch_first=True, padding_value=0).float().to(
|
250 |
+
device
|
251 |
+
)
|
252 |
+
for j in range(0, len(ps), batch_size):
|
253 |
+
ps_batch = torch.nn.utils.rnn.pad_sequence(
|
254 |
+
ps[j : j + batch_size], batch_first=True, padding_value=0
|
255 |
+
).float().to(device)
|
256 |
+
scores_batch.append(torch.einsum("bnd,csd->bcns", qs_batch, ps_batch).max(dim=3)[0].sum(dim=2))
|
257 |
+
scores_batch = torch.cat(scores_batch, dim=1).cpu()
|
258 |
+
scores_list.append(scores_batch)
|
259 |
+
|
260 |
+
scores = torch.cat(scores_list, dim=0)
|
261 |
+
assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}"
|
262 |
+
|
263 |
+
scores = scores.to(torch.float32)
|
264 |
+
return scores
|
265 |
+
|