File size: 3,835 Bytes
e555415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os

os.environ["TRANSFORMERS_CACHE"] = "./cache/transformersCache/"
os.environ["HF_HOME"] = "./cache/hgCache/"

import torch
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForMaskedLM, BertForMaskedLM
import pandas as pd
import time
import random
import torch

random.seed(42)

# wget https://huggingface.co/datasets/blackerx/turkish_v2/resolve/main/data/train-00000-of-00001.parquet
df = pd.read_parquet("qa.parquet")
print(df)

tokenizer = AutoTokenizer.from_pretrained(
    "99eren99/ModernBERT-base-Turkish-uncased-mlm", do_lower_case=False
)
tokenizer.truncation_side = "right"

modernBert = AutoModelForMaskedLM.from_pretrained(
    "99eren99/ModernBERT-base-Turkish-uncased-mlm",
)

cosmos = AutoModelForMaskedLM.from_pretrained("ytu-ce-cosmos/turkish-base-bert-uncased")

dbmdz = AutoModelForMaskedLM.from_pretrained("dbmdz/bert-base-turkish-uncased")

modernBert.eval()
cosmos.eval()
dbmdz.eval()

modernBert.to("cuda", dtype=torch.float16)
print(modernBert.dtype)
cosmos.to("cuda")
dbmdz.to("cuda")


modernBertTrueTokenCount = 0
cosmosTrueTokenCount = 0
dbmdzTrueTokenCount = 0

modernBertElapsedTime = 0
cosmosElapsedTime = 0
dbmdzElapsedTime = 0


def mask_tokens(inputs):
    inputsCopy = inputs.clone()

    s = list(range(1, len(inputs[0]) - 1))
    random.shuffle(s)

    masked_indices = s[: int(len(s) * 0.05)]  # mask ratio

    inputsCopy[0][masked_indices] = 4

    return inputsCopy, masked_indices


def getTrueTokenCountAndElapsedTime(model, inputs, masked_input_ids, masked_indices):
    start = time.time()
    with torch.no_grad():
        outputs = model(masked_input_ids)
        predictions = outputs.logits.cpu()

    # Get the predicted tokens
    predicted_index = torch.argmax(predictions[0], dim=-1)

    trueTokenCount = (
        (inputs.input_ids[0, masked_indices] == predicted_index[masked_indices]) * 1
    ).sum()

    end = time.time()
    elapsedTime = end - start

    return trueTokenCount, elapsedTime, predicted_index


totalMaskedTokens = 0

from tqdm import tqdm

for row in tqdm(df.output.values):
    text = row.replace("I", "ı").lower()
    inputs = tokenizer(text, return_tensors="pt", max_length=512, truncation=True)
    masked_input_ids, masked_indices = mask_tokens(inputs.input_ids)

    masked_input_ids = masked_input_ids.to("cuda")

    """ print("Original Text:", text)
    print(
        "Masked Text:",
        " ".join(tokenizer.convert_ids_to_tokens(masked_input_ids[0].tolist())),
    ) """

    # modernBert
    trueTokenCount, elapsedTime, predicted_index = getTrueTokenCountAndElapsedTime(
        modernBert, inputs, masked_input_ids, masked_indices
    )
    modernBertTrueTokenCount += trueTokenCount
    modernBertElapsedTime += elapsedTime
    # print("Predicted Text ModernBERT:", tokenizer.decode(predicted_index))

    # cosmos
    trueTokenCount, elapsedTime, predicted_index = getTrueTokenCountAndElapsedTime(
        cosmos, inputs, masked_input_ids, masked_indices
    )
    cosmosTrueTokenCount += trueTokenCount
    cosmosElapsedTime += elapsedTime
    # print("Predicted Text Cosmos BERT:", tokenizer.decode(predicted_index))

    # dbmdz
    trueTokenCount, elapsedTime, predicted_index = getTrueTokenCountAndElapsedTime(
        dbmdz, inputs, masked_input_ids, masked_indices
    )
    dbmdzTrueTokenCount += trueTokenCount
    dbmdzElapsedTime += elapsedTime
    # print("Predicted Text BERTurk:", tokenizer.decode(predicted_index))

    totalMaskedTokens += len(masked_indices)

print(totalMaskedTokens)
print(modernBertTrueTokenCount, modernBertElapsedTime)
print(cosmosTrueTokenCount, cosmosElapsedTime)
print(dbmdzTrueTokenCount, dbmdzElapsedTime)

print(modernBertTrueTokenCount / totalMaskedTokens)
print(cosmosTrueTokenCount / totalMaskedTokens)
print(dbmdzTrueTokenCount / totalMaskedTokens)