Model save
Browse files- README.md +30 -60
- model.safetensors +1 -1
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Accuracy
|
27 |
type: accuracy
|
28 |
-
value: 0.
|
29 |
- name: Precision
|
30 |
type: precision
|
31 |
-
value: 0.
|
32 |
- name: Recall
|
33 |
type: recall
|
34 |
-
value: 0.
|
35 |
- name: F1
|
36 |
type: f1
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [hongpingjun98/BioMedNLP_DeBERTa](https://huggingface.co/hongpingjun98/BioMedNLP_DeBERTa) on the sem_eval_2024_task_2 dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 2.
|
48 |
-
- Accuracy: 0.
|
49 |
-
- Precision: 0.
|
50 |
-
- Recall: 0.
|
51 |
-
- F1: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -74,63 +74,33 @@ The following hyperparameters were used during training:
|
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
- lr_scheduler_warmup_steps: 500
|
77 |
-
- num_epochs:
|
78 |
- mixed_precision_training: Native AMP
|
79 |
|
80 |
### Training results
|
81 |
|
82 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
83 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
84 |
-
|
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.0026 | 21.0 | 189 | 1.7122 | 0.655 | 0.6550 | 0.655 | 0.6550 |
|
105 |
-
| 0.0019 | 22.0 | 198 | 1.7682 | 0.655 | 0.6550 | 0.655 | 0.6550 |
|
106 |
-
| 0.0016 | 23.0 | 207 | 1.8163 | 0.655 | 0.6550 | 0.655 | 0.6550 |
|
107 |
-
| 0.0013 | 24.0 | 216 | 1.8590 | 0.655 | 0.6550 | 0.655 | 0.6550 |
|
108 |
-
| 0.0012 | 25.0 | 225 | 1.8883 | 0.66 | 0.6601 | 0.66 | 0.6600 |
|
109 |
-
| 0.001 | 26.0 | 234 | 1.9199 | 0.665 | 0.6651 | 0.665 | 0.6649 |
|
110 |
-
| 0.0008 | 27.0 | 243 | 1.9548 | 0.665 | 0.6651 | 0.665 | 0.6649 |
|
111 |
-
| 0.0007 | 28.0 | 252 | 1.9958 | 0.665 | 0.6658 | 0.665 | 0.6646 |
|
112 |
-
| 0.0007 | 29.0 | 261 | 2.0427 | 0.665 | 0.6658 | 0.665 | 0.6646 |
|
113 |
-
| 0.0006 | 30.0 | 270 | 2.0890 | 0.66 | 0.6601 | 0.66 | 0.6600 |
|
114 |
-
| 0.0006 | 31.0 | 279 | 2.1265 | 0.66 | 0.6601 | 0.66 | 0.6600 |
|
115 |
-
| 0.0005 | 32.0 | 288 | 2.1537 | 0.66 | 0.6601 | 0.66 | 0.6600 |
|
116 |
-
| 0.0077 | 33.0 | 297 | 2.1871 | 0.655 | 0.6550 | 0.655 | 0.6550 |
|
117 |
-
| 0.0004 | 34.0 | 306 | 2.2152 | 0.66 | 0.66 | 0.66 | 0.66 |
|
118 |
-
| 0.0004 | 35.0 | 315 | 2.2393 | 0.66 | 0.6601 | 0.66 | 0.6600 |
|
119 |
-
| 0.0003 | 36.0 | 324 | 2.2641 | 0.66 | 0.6601 | 0.66 | 0.6600 |
|
120 |
-
| 0.0003 | 37.0 | 333 | 2.2881 | 0.66 | 0.6601 | 0.66 | 0.6600 |
|
121 |
-
| 0.0008 | 38.0 | 342 | 2.3215 | 0.645 | 0.6462 | 0.645 | 0.6443 |
|
122 |
-
| 0.0005 | 39.0 | 351 | 2.3445 | 0.665 | 0.6650 | 0.665 | 0.6650 |
|
123 |
-
| 0.0426 | 40.0 | 360 | 2.3033 | 0.68 | 0.6818 | 0.6800 | 0.6792 |
|
124 |
-
| 0.0426 | 41.0 | 369 | 2.3582 | 0.66 | 0.6601 | 0.66 | 0.6600 |
|
125 |
-
| 0.0005 | 42.0 | 378 | 2.3550 | 0.66 | 0.6603 | 0.66 | 0.6599 |
|
126 |
-
| 0.0402 | 43.0 | 387 | 2.3575 | 0.665 | 0.6654 | 0.665 | 0.6648 |
|
127 |
-
| 0.0003 | 44.0 | 396 | 2.3372 | 0.675 | 0.6752 | 0.675 | 0.6749 |
|
128 |
-
| 0.0135 | 45.0 | 405 | 2.3467 | 0.66 | 0.6603 | 0.66 | 0.6599 |
|
129 |
-
| 0.0007 | 46.0 | 414 | 2.3033 | 0.685 | 0.6859 | 0.685 | 0.6846 |
|
130 |
-
| 0.0003 | 47.0 | 423 | 2.2770 | 0.675 | 0.6764 | 0.675 | 0.6743 |
|
131 |
-
| 0.0003 | 48.0 | 432 | 2.3131 | 0.68 | 0.6807 | 0.6800 | 0.6797 |
|
132 |
-
| 0.0002 | 49.0 | 441 | 2.4371 | 0.66 | 0.6601 | 0.66 | 0.6600 |
|
133 |
-
| 0.0004 | 50.0 | 450 | 2.5118 | 0.655 | 0.6551 | 0.655 | 0.6549 |
|
134 |
|
135 |
|
136 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Accuracy
|
27 |
type: accuracy
|
28 |
+
value: 0.705
|
29 |
- name: Precision
|
30 |
type: precision
|
31 |
+
value: 0.7238235615241838
|
32 |
- name: Recall
|
33 |
type: recall
|
34 |
+
value: 0.7050000000000001
|
35 |
- name: F1
|
36 |
type: f1
|
37 |
+
value: 0.6986644194182692
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [hongpingjun98/BioMedNLP_DeBERTa](https://huggingface.co/hongpingjun98/BioMedNLP_DeBERTa) on the sem_eval_2024_task_2 dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 2.1863
|
48 |
+
- Accuracy: 0.705
|
49 |
+
- Precision: 0.7238
|
50 |
+
- Recall: 0.7050
|
51 |
+
- F1: 0.6987
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
- lr_scheduler_warmup_steps: 500
|
77 |
+
- num_epochs: 20
|
78 |
- mixed_precision_training: Native AMP
|
79 |
|
80 |
### Training results
|
81 |
|
82 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
83 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
84 |
+
| 0.4238 | 1.0 | 116 | 0.6639 | 0.665 | 0.6678 | 0.665 | 0.6636 |
|
85 |
+
| 0.4316 | 2.0 | 232 | 0.6644 | 0.68 | 0.6875 | 0.6800 | 0.6768 |
|
86 |
+
| 0.3819 | 3.0 | 348 | 0.7328 | 0.71 | 0.7188 | 0.71 | 0.7071 |
|
87 |
+
| 0.3243 | 4.0 | 464 | 0.9162 | 0.7 | 0.7083 | 0.7 | 0.6970 |
|
88 |
+
| 0.4053 | 5.0 | 580 | 0.7145 | 0.715 | 0.7214 | 0.7150 | 0.7129 |
|
89 |
+
| 0.2548 | 6.0 | 696 | 1.0598 | 0.69 | 0.7016 | 0.69 | 0.6855 |
|
90 |
+
| 0.3455 | 7.0 | 812 | 0.7782 | 0.72 | 0.7232 | 0.72 | 0.7190 |
|
91 |
+
| 0.2177 | 8.0 | 928 | 1.1182 | 0.69 | 0.6950 | 0.69 | 0.6880 |
|
92 |
+
| 0.2304 | 9.0 | 1044 | 1.4332 | 0.695 | 0.708 | 0.695 | 0.6902 |
|
93 |
+
| 0.2103 | 10.0 | 1160 | 1.2736 | 0.7 | 0.7198 | 0.7 | 0.6931 |
|
94 |
+
| 0.1748 | 11.0 | 1276 | 1.2654 | 0.675 | 0.6816 | 0.675 | 0.6720 |
|
95 |
+
| 0.1608 | 12.0 | 1392 | 1.8885 | 0.63 | 0.6689 | 0.63 | 0.6074 |
|
96 |
+
| 0.1082 | 13.0 | 1508 | 1.7004 | 0.68 | 0.7005 | 0.6800 | 0.6716 |
|
97 |
+
| 0.1074 | 14.0 | 1624 | 1.8145 | 0.67 | 0.6804 | 0.67 | 0.6652 |
|
98 |
+
| 0.0238 | 15.0 | 1740 | 1.7608 | 0.68 | 0.6931 | 0.68 | 0.6745 |
|
99 |
+
| 0.038 | 16.0 | 1856 | 1.9937 | 0.67 | 0.6953 | 0.6700 | 0.6589 |
|
100 |
+
| 0.0365 | 17.0 | 1972 | 2.1871 | 0.675 | 0.6964 | 0.675 | 0.6659 |
|
101 |
+
| 0.0144 | 18.0 | 2088 | 2.1093 | 0.695 | 0.7059 | 0.6950 | 0.6909 |
|
102 |
+
| 0.0014 | 19.0 | 2204 | 2.1559 | 0.695 | 0.7103 | 0.6950 | 0.6893 |
|
103 |
+
| 0.0324 | 20.0 | 2320 | 2.1863 | 0.705 | 0.7238 | 0.7050 | 0.6987 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
|
106 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 432960488
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad6bcac090dc4d8d1055d19d2a961c56f9b00c065aede4bf4f09cebfa3b38442
|
3 |
size 432960488
|