AAOBA's picture
Updated RM.md
f7e3261
raw
history blame
5.38 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
import timm
from PIL import Image
import matplotlib.pyplot as plt
import os
# Thanks to ( ), proxy can be essentail :)
# os.environ['HTTPS_PROXY'] = 'http://127.0.0.1:10809'
# os.environ['HTTP_PROXY'] = 'http://127.0.0.1:10809'
# os.environ['ALL_PROXY'] = 'socks5://127.0.0.1:10808'
IMG_FILE_LIST = [
'./testcases/14.jpg',
'./testcases/15.jpg',
'./testcases/16.jpg',
'./testcases/17.jpg',
'./testcases/18.jpg',
'./testcases/19.jpg'
]
TANH_SCALE = 1
class Scorer(nn.Module):
def __init__(
self,
model_name,
pretrained=False,
features_only=True,
embedding_dim=128
):
super(Scorer, self).__init__()
self.model = timm.create_model(model_name, pretrained=pretrained, features_only=features_only)
pooled_dim = 128 + 256 + 512 + 1024
self.layer_norms = nn.ModuleList([
nn.LayerNorm(128),
nn.LayerNorm(256),
nn.LayerNorm(512),
nn.LayerNorm(1024)
])
self.mlp = nn.Sequential(
nn.Linear(pooled_dim, pooled_dim),
nn.BatchNorm1d(pooled_dim),
nn.GELU(),
)
# Probably a BYOL-accidental BatchNorm could help ?
self.mlp_1 = nn.Sequential(
nn.Linear(pooled_dim, pooled_dim // 4),
nn.BatchNorm1d(pooled_dim // 4),
nn.GELU(),
nn.Linear(pooled_dim // 4, 3),
nn.Tanh()
)
self.mlp_2 = nn.Sequential(
nn.Linear(pooled_dim, pooled_dim // 4),
nn.GELU(),
nn.Linear(pooled_dim // 4, 1),
)
def forward(self, x, upload_date=None, freeze_backbone=False):
if freeze_backbone:
with torch.no_grad():
out_features = self.model(x)
else:
out_features = self.model(x)
# out_features: List [
# torch.Size([1, 128, x, x])
# torch.Size([1, 256, x, x])
# torch.Size([1, 512, x, x])
# torch.Size([1, 1024, x, x])
# ]
# Pool the output features from each layer on the channel dimension
pooled_features = [F.adaptive_avg_pool2d(x, 1).squeeze(-1).squeeze(-1) for x in out_features]
# Normalize the pooled features
pooled_features = [self.layer_norms[i](x) for i, x in enumerate(pooled_features)]
# Embed the upload date
# date_embedding_features = self.embedding(upload_date)
# Concatenate the pooled features
out = torch.cat(pooled_features, dim=-1)
# Concatenate the date embedding features
# out = torch.cat([out, date_embedding_features], dim=-1)
out = self.mlp(out)
rl_out = self.mlp_1(out) * TANH_SCALE
ai_out = self.mlp_2(out).squeeze(-1)
return rl_out[:, 0], rl_out[:, 1], F.sigmoid(ai_out), rl_out[:, 2]
BACKBONE = 'convnextv2_base.fcmae'
RESOLUTION = 640
SHOW_GRAD = False
GRAD_SCALE = 50
MORE_LIKE = False
MORE_COLLECTION = False
LESS_AI = False
MORE_RELATIVE_POP = True
WEIGHT_PATH = './scorer.pt'
DECIVE = 'cuda'
def main():
model = Scorer(BACKBONE)
transform = transforms.Compose([
transforms.Resize((RESOLUTION, RESOLUTION)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
model.load_state_dict(torch.load(WEIGHT_PATH))
model.eval()
model.to(DECIVE)
# Show all the images in pyplot horizontally, and mark the predicted values under each image
fig = plt.figure(figsize=(20, 20))
for i, img_file in enumerate(IMG_FILE_LIST):
img = Image.open(img_file, 'r').convert('RGB')
transformed_img = transform(img).unsqueeze(0).to(DECIVE)
transformed_img.requires_grad = True
liking_pred, collection_pred, ai_pred, relative_pop = model(transformed_img, torch.tensor([1]), False)
ax = fig.add_subplot(1, len(IMG_FILE_LIST), i + 1)
backwardee = 0
if MORE_LIKE:
backwardee -= liking_pred
if MORE_COLLECTION:
backwardee -= collection_pred
if LESS_AI:
backwardee += ai_pred
if MORE_RELATIVE_POP:
backwardee -= relative_pop
if SHOW_GRAD:
model.zero_grad()
# Figure out which part of the image is the most important to popularity
backwardee.backward()
# Get the gradients of the image, and normalize them
gradients = transformed_img.grad
# squeeze the batch dimension
gradients = gradients.squeeze(0).detach()
# resize the gradients to the same size as the image
gradients = transforms.Resize((img.height, img.width))(gradients)
# add the gradients to the image
img = transforms.ToTensor()(img)
img = img + gradients.cpu() * GRAD_SCALE
img = transforms.ToPILImage()(img.cpu())
ax.imshow(img)
del img
ax.set_title(
f'Liking: {liking_pred.item():.3f}\nCollection: {collection_pred.item():.3f}\nAI: {ai_pred.item() * 100:.3f}%\nPopularity: {relative_pop.item():.3f}')
plt.show()
pass
if __name__ == '__main__':
main()