ABrinkmann commited on
Commit
04c94ba
·
1 Parent(s): 2317430

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: bert-finetuned-ner-10epochs
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # bert-finetuned-ner-10epochs
19
+
20
+ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0895
23
+ - Precision: 0.9167
24
+ - Recall: 0.9546
25
+ - F1: 0.9352
26
+ - Accuracy: 0.9888
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 10
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.0061 | 1.0 | 2261 | 0.0961 | 0.8813 | 0.9436 | 0.9114 | 0.9869 |
58
+ | 0.0241 | 2.0 | 4522 | 0.0566 | 0.9001 | 0.9502 | 0.9245 | 0.9878 |
59
+ | 0.02 | 3.0 | 6783 | 0.0560 | 0.9010 | 0.9528 | 0.9261 | 0.9879 |
60
+ | 0.0169 | 4.0 | 9044 | 0.0519 | 0.9045 | 0.9539 | 0.9285 | 0.9884 |
61
+ | 0.0129 | 5.0 | 11305 | 0.0621 | 0.9073 | 0.9568 | 0.9314 | 0.9886 |
62
+ | 0.009 | 6.0 | 13566 | 0.0623 | 0.9123 | 0.9451 | 0.9284 | 0.9883 |
63
+ | 0.0078 | 7.0 | 15827 | 0.0727 | 0.9145 | 0.9473 | 0.9306 | 0.9886 |
64
+ | 0.0056 | 8.0 | 18088 | 0.0806 | 0.9134 | 0.9535 | 0.9330 | 0.9882 |
65
+ | 0.0034 | 9.0 | 20349 | 0.0856 | 0.9103 | 0.9546 | 0.9319 | 0.9886 |
66
+ | 0.003 | 10.0 | 22610 | 0.0895 | 0.9167 | 0.9546 | 0.9352 | 0.9888 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.30.1
72
+ - Pytorch 2.0.1+cu117
73
+ - Datasets 2.12.0
74
+ - Tokenizers 0.13.3