--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: deberta-v3-large-finetuned-ner-10epochs-V2 results: [] --- # deberta-v3-large-finetuned-ner-10epochs-V2 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0941 - Precision: 0.9139 - Recall: 0.9358 - F1: 0.9248 - Accuracy: 0.9856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0539 | 1.0 | 2261 | 0.0571 | 0.8751 | 0.9304 | 0.9019 | 0.9822 | | 0.0481 | 2.0 | 4522 | 0.0515 | 0.8794 | 0.9387 | 0.9081 | 0.9833 | | 0.0362 | 3.0 | 6783 | 0.0502 | 0.8956 | 0.9336 | 0.9142 | 0.9841 | | 0.0341 | 4.0 | 9044 | 0.0456 | 0.9097 | 0.9301 | 0.9198 | 0.9856 | | 0.0272 | 5.0 | 11305 | 0.0520 | 0.9005 | 0.9451 | 0.9223 | 0.9860 | | 0.0214 | 6.0 | 13566 | 0.0583 | 0.9069 | 0.9330 | 0.9197 | 0.9855 | | 0.0162 | 7.0 | 15827 | 0.0684 | 0.9154 | 0.9259 | 0.9206 | 0.9854 | | 0.0129 | 8.0 | 18088 | 0.0736 | 0.9158 | 0.9339 | 0.9248 | 0.9854 | | 0.0074 | 9.0 | 20349 | 0.0869 | 0.9091 | 0.9355 | 0.9221 | 0.9854 | | 0.0049 | 10.0 | 22610 | 0.0941 | 0.9139 | 0.9358 | 0.9248 | 0.9856 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.0 - Tokenizers 0.13.3