File size: 6,570 Bytes
feb894c 12366ec feb894c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
---
'[object Object]': null
language:
- en
license: other
license_name: autodesk-non-commercial-3d-generative-v1.0
license_link: LICENSE.md
tags:
- make-a-shape
- mv-to-3d
---
---
# Model Card for Make-A-Shape Multi-View to 3D Model
This model is part of the Make-A-Shape paper, capable of generating high-quality 3D shapes from multi-view images with intricate geometric details, realistic structures, and complex topologies.
## Model Details
### Model Description
Make-A-Shape is a novel 3D generative framework trained on an extensive dataset of over 10 million publicly-available 3D shapes. The multi-view to 3D model is one of the conditional generation models in this framework. It can efficiently generate a wide range of high-quality 3D shapes from four view-specific images as inputs. The model uses a wavelet-tree representation and adaptive training strategy to achieve superior performance in terms of geometric detail and structural plausibility.
- **Developed by:** Ka-Hei Hui, Aditya Sanghi, Arianna Rampini, Kamal Rahimi Malekshan, Zhengzhe Liu, Hooman Shayani, Chi-Wing Fu
- **Model type:** 3D Generative Model
- **License:** Autodesk Non-Commercial (3D Generative) v1.0
For more information please look at the [Project](https://www.research.autodesk.com/publications/generative-ai-make-a-shape/) [Page](https://edward1997104.github.io/make-a-shape/) and [the ICML paper](https://proceedings.mlr.press/v235/hui24a.html).
### Model Sources
- **Repository:** [https://github.com/AutodeskAILab/Make-a-Shape](https://github.com/AutodeskAILab/Make-a-Shape)
- **Paper:** [ArXiv:2401.11067](https://arxiv.org/abs/2401.11067), [ICML - Make-A-Shape: a Ten-Million-scale 3D Shape Model](https://proceedings.mlr.press/v235/hui24a.html)
- **Demo:** [Google Colab](https://colab.research.google.com/drive/1XIoeanLjXIDdLow6qxY7cAZ6YZpqY40d?usp=sharing)
## Uses
### Direct Use
This model is released by Autodesk and intended for academic and research purposes only for the theoretical exploration and demonstration of the Make-a-Shape 3D generative framework. Please see [here](https://github.com/AutodeskAILab/Make-a-Shape?tab=readme-ov-file#multi-view-to-3d) for inferencing instructions.
### Out-of-Scope Use
The model should not be used for:
- Commercial purposes
- Creation of load-bearing physical objects the failure of which could cause property damage or personal injury
- Any usage not in compliance with the [license](https://huggingface.co/ADSKAILab/Make-A-Shape-multi-view-20m/blob/main/LICENSE.md), in particular, the "Acceptable Use" section.
## Bias, Risks, and Limitations
### Bias
- The model may inherit biases present in the publicly-available training datasets, which could lead to uneven representation of certain object types or styles.
- The model's performance may degrade for object categories or styles that are underrepresented in the training data.
### Risks and Limitations
- The quality of the generated 3D output may be impacted by the quality and clarity of the input image.
- The model may occasionally generate implausible shapes, especially when the input image is ambiguous or of low quality. Even theoretically plausible shapes should not be relied upon for real-world structural soundness.
## How to Get Started with the Model
Please refer to the instructions [here](https://github.com/AutodeskAILab/Make-a-Shape?tab=readme-ov-file#multi-view-to-3d).
## Training Details
### Training Data
The model was trained on a dataset of over 10 million 3D shapes aggregated from 18 different publicly-available sub-datasets, including ModelNet, ShapeNet, SMPL, Thingi10K, SMAL, COMA, House3D, ABC, Fusion 360, 3D-FUTURE, BuildingNet, DeformingThings4D, FG3D, Toys4K, ABO, Infinigen, Objaverse, and two subsets of ObjaverseXL (Thingiverse and GitHub).
### Training Procedure
#### Preprocessing
Each 3D shape in the dataset was converted into a truncated signed distance function (TSDF) with a resolution of 256³. The TSDF was then decomposed using a discrete wavelet transform to create the wavelet-tree representation used by the model.
#### Training Hyperparameters
- **Training regime:** Please refer to the paper.
#### Speeds, Sizes, Times
- The model was trained on 48 × A10G GPUs for about 20 days, amounting to around 23,000 GPU hours.
- The model can generate shapes within two seconds for most conditions.
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
The model was evaluated on a test set consisting of 2% of the shapes from each sub-dataset in the training data, as well as on the entire Google Scanned Objects (GSO) dataset, which was not part of the training data.
#### Factors
The evaluation considered various factors such as the quality of generated shapes, the ability to capture fine details and complex structures, and the model's performance across different object categories.
#### Metrics
The model was evaluated using the following metrics:
- Intersection over Union (IoU)
- Light Field Distance (LFD)
- Chamfer Distance (CD)
### Results
The multi-view to 3D model achieved the following results on the "Our Val" dataset:
- LFD: 2217.25
- IoU: 0.6707
- CD: 0.00350
On the GSO dataset:
- LFD: 1890.85
- IoU: 0.7460
- CD: 0.00337
## Technical Specifications
### Model Architecture and Objective
The model uses a U-ViT architecture with learnable skip-connections between the convolution and deconvolution blocks. It employs a wavelet-tree representation and a subband adaptive training strategy to effectively capture both coarse and fine details of 3D shapes.
### Compute Infrastructure
#### Hardware
The model was trained on 48 × A10G GPUs.
## Citation
**BibTeX:**
```latex
@InProceedings{pmlr-v235-hui24a,
title = {Make-A-Shape: a Ten-Million-scale 3{D} Shape Model},
author = {Hui, Ka-Hei and Sanghi, Aditya and Rampini, Arianna and Rahimi Malekshan, Kamal and Liu, Zhengzhe and Shayani, Hooman and Fu, Chi-Wing},
booktitle = {Proceedings of the 41st International Conference on Machine Learning},
pages = {20660--20681},
year = {2024},
editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix},
volume = {235},
series = {Proceedings of Machine Learning Research},
month = {21--27 Jul},
publisher = {PMLR},
pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/hui24a/hui24a.pdf},
url = {https://proceedings.mlr.press/v235/hui24a.html},
}
```
|