Update README.md
Browse files
README.md
CHANGED
@@ -4,19 +4,46 @@ tags:
|
|
4 |
- alignment-handbook
|
5 |
- generated_from_trainer
|
6 |
widget:
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
pipeline_tag: text-generation
|
15 |
-
|
16 |
-
|
17 |
model-index:
|
18 |
- name: NuminaMath-7B-TIR
|
19 |
results: []
|
|
|
20 |
---
|
21 |
|
22 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
4 |
- alignment-handbook
|
5 |
- generated_from_trainer
|
6 |
widget:
|
7 |
+
- example_title: Math problem
|
8 |
+
messages:
|
9 |
+
- role: user
|
10 |
+
content: >-
|
11 |
+
For how many values of the constant $k$ will the polynomial $x^{2}+kx+36$
|
12 |
+
have two distinct integer roots?
|
13 |
+
output:
|
14 |
+
text: >-
|
15 |
+
### Solution: 1. For the polynomial \\( x^2 + kx + 36 \\) to have two
|
16 |
+
distinct integer roots, let's denote these roots by \\( r_1 \\) and \\(
|
17 |
+
r_2 \\).\n\n2. According to Vieta's formulas, the sum of the roots \\( r_1
|
18 |
+
+ r_2 \\) is equal to \\(-k\\), and the product of the roots \\( r_1
|
19 |
+
\\cdot r_2 \\) is equal to 36.\n\n3. To find the distinct integer pairs
|
20 |
+
\\((r_1, r_2)\\) whose product is 36, we need to determine all pairs of
|
21 |
+
integers \\((r_1, r_2)\\) such that \\( r_1 \\cdot r_2 = 36 \\) and \\(
|
22 |
+
r_1 \\neq r_2 \\).\n\n4. From the equation \\( r_1 + r_2 = -k \\), for
|
23 |
+
each valid pair \\((r_1, r_2)\\), we can compute the corresponding value
|
24 |
+
of \\( k \\).\n\n5. Finally, since we need the polynomial to have two
|
25 |
+
distinct integer roots, we need to ensure that \\( r_1 \\) and \\( r_2 \\)
|
26 |
+
are distinct.\n\nLet's start by finding all pairs \\((r_1, r_2)\\) such
|
27 |
+
that \\( r_1 \\cdot r_2 = 36 \\). We'll then determine the values of \\( k
|
28 |
+
\\) and ensure the roots are distinct.\n```python\nimport itertools\n\n#
|
29 |
+
Find all pairs (r1, r2) such that r1 * r2 = 36\nproduct_36 =
|
30 |
+
36\nfactor_pairs = []\n\nfor i in range(1, product_36 + 1):\n if
|
31 |
+
product_36 % i == 0:\n pair = (i, product_36 // i)\n if pair[0] !=
|
32 |
+
pair[1]: # Ensure distinct pairs\n factor_pairs.append(pair)\n\n#
|
33 |
+
Calculate k for each pair and ensure distinct integer
|
34 |
+
roots\nvalid_k_values = set()\nfor r1, r2 in factor_pairs:\n if r1 !=
|
35 |
+
r2:\n k = -(r1 + r2)\n
|
36 |
+
valid_k_values.add(k)\n\nprint((len(valid_k_values),
|
37 |
+
sorted(valid_k_values)))\n```\n```output\n(4, [-37, -20, -15,
|
38 |
+
-13])\n```\nThe distinct integer values of \\( k \\) that make the
|
39 |
+
polynomial \\( x^2 + kx + 36 \\) have two distinct integer roots are
|
40 |
+
\\(-37, -20, -15, \\text{and} -13\\).\n\nTherefore, the number of such
|
41 |
+
values of \\( k \\) is:\n\n\\[\n\\boxed{4}\n\\]\n
|
42 |
pipeline_tag: text-generation
|
|
|
|
|
43 |
model-index:
|
44 |
- name: NuminaMath-7B-TIR
|
45 |
results: []
|
46 |
+
license: apache-2.0
|
47 |
---
|
48 |
|
49 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|