File size: 10,958 Bytes
7b07ad9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import os
from collections import defaultdict, namedtuple
from datetime import datetime, timedelta
from json import dumps
from typing import Any, AnyStr, Dict, List, NamedTuple, Union, Optional
import numpy as np
import requests
import tensorflow as tf
from fastapi import FastAPI
from kafka import KafkaProducer
from pydantic import BaseModel
from scipy.interpolate import interp1d
from model import ModelConfig, UNet
from postprocess import extract_picks
tf.compat.v1.disable_eager_execution()
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
PROJECT_ROOT = os.path.realpath(os.path.join(os.path.dirname(__file__), ".."))
JSONObject = Dict[AnyStr, Any]
JSONArray = List[Any]
JSONStructure = Union[JSONArray, JSONObject]
app = FastAPI()
X_SHAPE = [3000, 1, 3]
SAMPLING_RATE = 100
# load model
model = UNet(mode="pred")
sess_config = tf.compat.v1.ConfigProto()
sess_config.gpu_options.allow_growth = True
sess = tf.compat.v1.Session(config=sess_config)
saver = tf.compat.v1.train.Saver(tf.compat.v1.global_variables())
init = tf.compat.v1.global_variables_initializer()
sess.run(init)
latest_check_point = tf.train.latest_checkpoint(f"{PROJECT_ROOT}/model/190703-214543")
print(f"restoring model {latest_check_point}")
saver.restore(sess, latest_check_point)
# GAMMA API Endpoint
GAMMA_API_URL = "http://gamma-api:8001"
# GAMMA_API_URL = 'http://localhost:8001'
# GAMMA_API_URL = "http://gamma.quakeflow.com"
# GAMMA_API_URL = "http://127.0.0.1:8001"
# Kafak producer
use_kafka = False
try:
print("Connecting to k8s kafka")
BROKER_URL = "quakeflow-kafka-headless:9092"
# BROKER_URL = "34.83.137.139:9094"
producer = KafkaProducer(
bootstrap_servers=[BROKER_URL],
key_serializer=lambda x: dumps(x).encode("utf-8"),
value_serializer=lambda x: dumps(x).encode("utf-8"),
)
use_kafka = True
print("k8s kafka connection success!")
except BaseException:
print("k8s Kafka connection error")
try:
print("Connecting to local kafka")
producer = KafkaProducer(
bootstrap_servers=["localhost:9092"],
key_serializer=lambda x: dumps(x).encode("utf-8"),
value_serializer=lambda x: dumps(x).encode("utf-8"),
)
use_kafka = True
print("local kafka connection success!")
except BaseException:
print("local Kafka connection error")
print(f"Kafka status: {use_kafka}")
def normalize_batch(data, window=3000):
"""
data: nsta, nt, nch
"""
shift = window // 2
nsta, nt, nch = data.shape
# std in slide windows
data_pad = np.pad(data, ((0, 0), (window // 2, window // 2), (0, 0)), mode="reflect")
t = np.arange(0, nt, shift, dtype="int")
std = np.zeros([nsta, len(t) + 1, nch])
mean = np.zeros([nsta, len(t) + 1, nch])
for i in range(1, len(t)):
std[:, i, :] = np.std(data_pad[:, i * shift : i * shift + window, :], axis=1)
mean[:, i, :] = np.mean(data_pad[:, i * shift : i * shift + window, :], axis=1)
t = np.append(t, nt)
# std[:, -1, :] = np.std(data_pad[:, -window:, :], axis=1)
# mean[:, -1, :] = np.mean(data_pad[:, -window:, :], axis=1)
std[:, -1, :], mean[:, -1, :] = std[:, -2, :], mean[:, -2, :]
std[:, 0, :], mean[:, 0, :] = std[:, 1, :], mean[:, 1, :]
std[std == 0] = 1
# ## normalize data with interplated std
t_interp = np.arange(nt, dtype="int")
std_interp = interp1d(t, std, axis=1, kind="slinear")(t_interp)
mean_interp = interp1d(t, mean, axis=1, kind="slinear")(t_interp)
data = (data - mean_interp) / std_interp
return data
def preprocess(data):
raw = data.copy()
data = normalize_batch(data)
if len(data.shape) == 3:
data = data[:, :, np.newaxis, :]
raw = raw[:, :, np.newaxis, :]
return data, raw
def calc_timestamp(timestamp, sec):
timestamp = datetime.strptime(timestamp, "%Y-%m-%dT%H:%M:%S.%f") + timedelta(seconds=sec)
return timestamp.strftime("%Y-%m-%dT%H:%M:%S.%f")[:-3]
def format_picks(picks, dt, amplitudes):
picks_ = []
for pick, amplitude in zip(picks, amplitudes):
for idxs, probs, amps in zip(pick.p_idx, pick.p_prob, amplitude.p_amp):
for idx, prob, amp in zip(idxs, probs, amps):
picks_.append(
{
"id": pick.fname,
"timestamp": calc_timestamp(pick.t0, float(idx) * dt),
"prob": prob,
"amp": amp,
"type": "p",
}
)
for idxs, probs, amps in zip(pick.s_idx, pick.s_prob, amplitude.s_amp):
for idx, prob, amp in zip(idxs, probs, amps):
picks_.append(
{
"id": pick.fname,
"timestamp": calc_timestamp(pick.t0, float(idx) * dt),
"prob": prob,
"amp": amp,
"type": "s",
}
)
return picks_
def format_data(data):
# chn2idx = {"ENZ": {"E":0, "N":1, "Z":2},
# "123": {"3":0, "2":1, "1":2},
# "12Z": {"1":0, "2":1, "Z":2}}
chn2idx = {"E": 0, "N": 1, "Z": 2, "3": 0, "2": 1, "1": 2}
Data = NamedTuple("data", [("id", list), ("timestamp", list), ("vec", list), ("dt", float)])
# Group by station
chn_ = defaultdict(list)
t0_ = defaultdict(list)
vv_ = defaultdict(list)
for i in range(len(data.id)):
key = data.id[i][:-1]
chn_[key].append(data.id[i][-1])
t0_[key].append(datetime.strptime(data.timestamp[i], "%Y-%m-%dT%H:%M:%S.%f").timestamp() * SAMPLING_RATE)
vv_[key].append(np.array(data.vec[i]))
# Merge to Data tuple
id_ = []
timestamp_ = []
vec_ = []
for k in chn_:
id_.append(k)
min_t0 = min(t0_[k])
timestamp_.append(datetime.fromtimestamp(min_t0 / SAMPLING_RATE).strftime("%Y-%m-%dT%H:%M:%S.%f")[:-3])
vec = np.zeros([X_SHAPE[0], X_SHAPE[-1]])
for i in range(len(chn_[k])):
# vec[int(t0_[k][i]-min_t0):len(vv_[k][i]), chn2idx[chn_[k][i]]] = vv_[k][i][int(t0_[k][i]-min_t0):X_SHAPE[0]] - np.mean(vv_[k][i])
shift = int(t0_[k][i] - min_t0)
vec[shift : len(vv_[k][i]) + shift, chn2idx[chn_[k][i]]] = vv_[k][i][: X_SHAPE[0] - shift] - np.mean(
vv_[k][i][: X_SHAPE[0] - shift]
)
vec_.append(vec.tolist())
return Data(id=id_, timestamp=timestamp_, vec=vec_, dt=1 / SAMPLING_RATE)
# return {"id": id_, "timestamp": timestamp_, "vec": vec_, "dt":1 / SAMPLING_RATE}
def get_prediction(data, return_preds=False):
vec = np.array(data.vec)
vec, vec_raw = preprocess(vec)
feed = {model.X: vec, model.drop_rate: 0, model.is_training: False}
preds = sess.run(model.preds, feed_dict=feed)
picks = extract_picks(preds, station_ids=data.id, begin_times=data.timestamp, waveforms=vec_raw)
picks = [{k: v for k, v in pick.items() if k in ["station_id", "phase_time", "phase_score", "phase_type", "dt"]} for pick in picks]
if return_preds:
return picks, preds
return picks
class Data(BaseModel):
# id: Union[List[str], str]
# timestamp: Union[List[str], str]
# vec: Union[List[List[List[float]]], List[List[float]]]
id: List[str]
timestamp: List[str]
vec: Union[List[List[List[float]]], List[List[float]]]
dt: Optional[float] = 0.01
## gamma
stations: Optional[List[Dict[str, Union[float, str]]]] = None
config: Optional[Dict[str, Union[List[float], List[int], List[str], float, int, str]]] = None
# @app.on_event("startup")
# def set_default_executor():
# from concurrent.futures import ThreadPoolExecutor
# import asyncio
#
# loop = asyncio.get_running_loop()
# loop.set_default_executor(
# ThreadPoolExecutor(max_workers=2)
# )
@app.post("/predict")
def predict(data: Data):
picks = get_prediction(data)
return picks
@app.post("/predict_prob")
def predict(data: Data):
picks, preds = get_prediction(data, True)
return picks, preds.tolist()
@app.post("/predict_phasenet2gamma")
def predict(data: Data):
picks = get_prediction(data)
# if use_kafka:
# print("Push picks to kafka...")
# for pick in picks:
# producer.send("phasenet_picks", key=pick["id"], value=pick)
try:
catalog = requests.post(f"{GAMMA_API_URL}/predict", json={"picks": picks,
"stations": data.stations,
"config": data.config})
print(catalog.json()["catalog"])
return catalog.json()
except Exception as error:
print(error)
return {}
@app.post("/predict_phasenet2gamma2ui")
def predict(data: Data):
picks = get_prediction(data)
try:
catalog = requests.post(f"{GAMMA_API_URL}/predict", json={"picks": picks,
"stations": data.stations,
"config": data.config})
print(catalog.json()["catalog"])
return catalog.json()
except Exception as error:
print(error)
if use_kafka:
print("Push picks to kafka...")
for pick in picks:
producer.send("phasenet_picks", key=pick["id"], value=pick)
print("Push waveform to kafka...")
for id, timestamp, vec in zip(data.id, data.timestamp, data.vec):
producer.send("waveform_phasenet", key=id, value={"timestamp": timestamp, "vec": vec, "dt": data.dt})
return {}
@app.post("/predict_stream_phasenet2gamma")
def predict(data: Data):
data = format_data(data)
# for i in range(len(data.id)):
# plt.clf()
# plt.subplot(311)
# plt.plot(np.array(data.vec)[i, :, 0])
# plt.subplot(312)
# plt.plot(np.array(data.vec)[i, :, 1])
# plt.subplot(313)
# plt.plot(np.array(data.vec)[i, :, 2])
# plt.savefig(f"{data.id[i]}.png")
picks = get_prediction(data)
return_value = {}
try:
catalog = requests.post(f"{GAMMA_API_URL}/predict_stream", json={"picks": picks})
print("GMMA:", catalog.json()["catalog"])
return_value = catalog.json()
except Exception as error:
print(error)
if use_kafka:
print("Push picks to kafka...")
for pick in picks:
producer.send("phasenet_picks", key=pick["id"], value=pick)
print("Push waveform to kafka...")
for id, timestamp, vec in zip(data.id, data.timestamp, data.vec):
producer.send("waveform_phasenet", key=id, value={"timestamp": timestamp, "vec": vec, "dt": data.dt})
return return_value
@app.get("/healthz")
def healthz():
return {"status": "ok"}
|