File size: 2,671 Bytes
7bb513d 85a8797 1b6e4e8 85a8797 1b6e4e8 85a8797 1b6e4e8 85a8797 7bb513d 1b6e4e8 7bb513d 1b6e4e8 7bb513d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"import obspy\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(3000, 3)\n"
]
}
],
"source": [
"waveform = obspy.read()\n",
"array = np.array([x.data for x in waveform]).T\n",
"print(array.shape)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[{'phase_index': 470, 'phase_score': 0.954, 'phase_type': 'P'}, {'phase_index': 570, 'phase_score': 0.839, 'phase_type': 'S'}]]\n"
]
}
],
"source": [
"import requests\n",
"import numpy as np\n",
"import json\n",
"\n",
"API_URL = \"https://api-inference.huggingface.co/models/zhuwq/PhaseNet\"\n",
"# API_URL = \"https://api-inference.huggingface.co/models/zhuwq/test-model\"\n",
"headers = {\"Authorization\": \"Bearer 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\"}\n",
"\n",
"def query(payload):\n",
" response = requests.post(API_URL, headers=headers, json=payload)\n",
" return response.json()\n",
" # return json.loads(response.content.decode(\"utf-8\"))\n",
"\n",
"# array = np.random.rand(10, 3).tolist()\n",
"inputs = json.dumps(array.tolist())\n",
"data = {\n",
"\t# \"inputs\": \"I like you. I love you\",\n",
" \"inputs\": inputs,\n",
" \"options\":{\"wait_for_model\": True},\n",
"}\n",
"\n",
"output = query(data)\n",
"print(output)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "0efb5d07c150d814a79610ed835fac9f37a29f75f64726a0e33cb3dca03bca5e"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|