File size: 15,942 Bytes
a2db297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import os
from datetime import datetime
from importlib import import_module
from typing import List, Union, Callable, Optional

import deepspeed
import torch
from torch import Tensor, LongTensor, IntTensor
from torch.nn import init
from transformers import PreTrainedModel, AutoConfig, AutoModel, AutoTokenizer, AutoModelForCausalLM
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled, deepspeed_config

from .visual_tokenizer import ClipVisualTokenizer
from .configuration_ovis import OvisConfig
from .conversation_formatter import ConversationFormatter
from .utils import IGNORE_INDEX, IMAGE_TOKEN_INDEX, BEGIN_LINE, END_LINE, rank0_print

class VisualEmbedding(torch.nn.Embedding):
    def forward(self, input: Tensor) -> Tensor:
        if any((isinstance(input, LongTensor), isinstance(input, IntTensor))):
            return super().forward(input)
        return torch.matmul(input, self.weight)

    def reset_parameters(self, mean=0., std=1.) -> None:
        init.normal_(self.weight, mean=mean, std=std)
        self._fill_padding_idx_with_zero()


class OvisPreTrainedModel(PreTrainedModel):
    config_class = OvisConfig
    base_model_prefix = "ovis"


class Ovis(OvisPreTrainedModel):

    def __init__(self, config: OvisConfig, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)
        if kwargs.get('train_from_scratch'):
            self.llm = AutoModelForCausalLM.from_pretrained(kwargs['llm_name_or_path'], token=None)  # add token for gated model
            self.generation_config = self.llm.generation_config
            self.config.llm_config = self.llm.config
            self.config.hidden_size = self.llm.config.hidden_size  # for deepspeed auto configuration
            self.text_tokenizer = AutoTokenizer.from_pretrained(kwargs['llm_name_or_path'], token=None)  # add token for gated model
            if self.text_tokenizer.pad_token_id is None and kwargs.get('pad_token_id') is not None:
                self.text_tokenizer.pad_token_id = kwargs['pad_token_id']
            if kwargs.get('visual_tokenizer_pretrained_path'):
                self.visual_tokenizer = AutoModel.from_pretrained(kwargs['visual_tokenizer_pretrained_path'],
                                                                  image_processor_name_or_path=kwargs[
                                                                      'visual_tokenizer_pretrained_path'])
            else:
                self.visual_tokenizer = AutoModel.from_config(self.config.visual_tokenizer_config,
                                                              train_from_scratch=True)
            self.config.visual_tokenizer_config = self.visual_tokenizer.config
        else:
            self.llm = AutoModelForCausalLM.from_config(self.config.llm_config)
            assert self.config.hidden_size == self.llm.config.hidden_size, "hidden size mismatch"
            self.text_tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path)
            self.visual_tokenizer = AutoModel.from_config(self.config.visual_tokenizer_config,
                                                          image_processor_name_or_path=self.config.name_or_path)

        # initialize vte
        if is_deepspeed_zero3_enabled():
            with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
                self.vte = VisualEmbedding(self.config.visual_tokenizer_config.vocab_size, self.config.hidden_size)
        else:
            self.visual_tokenizer.to(device=self.llm.device)
            self.vte = VisualEmbedding(self.config.visual_tokenizer_config.vocab_size, self.config.hidden_size,
                                       device=self.visual_tokenizer.device, dtype=self.visual_tokenizer.dtype)

        def _merge_modules(modules_list: tuple):
            merged_modules = []
            for modules in modules_list:
                merged_modules.extend(modules if modules else [])
            return merged_modules

        self._no_split_modules = _merge_modules((self.llm._no_split_modules, self.visual_tokenizer._no_split_modules))
        self._skip_keys_device_placement = self.llm._skip_keys_device_placement
        self._keep_in_fp32_modules = _merge_modules(
            (self.llm._keep_in_fp32_modules, self.visual_tokenizer._keep_in_fp32_modules))
        self.is_parallelizable = all((self.llm.is_parallelizable, self.visual_tokenizer.is_parallelizable))
        self.supports_gradient_checkpointing = all(
            (self.llm.supports_gradient_checkpointing, self.visual_tokenizer.supports_gradient_checkpointing))
        self._supports_flash_attn_2 = all(
            (self.llm._supports_flash_attn_2, self.visual_tokenizer._supports_flash_attn_2))
        self._supports_sdpa = all((self.llm._supports_sdpa, self.visual_tokenizer._supports_sdpa))
        self._supports_cache_class = all((self.llm._supports_cache_class, self.visual_tokenizer._supports_cache_class))

    def get_text_tokenizer(self):
        return self.text_tokenizer

    def get_visual_tokenizer(self):
        return self.visual_tokenizer

    def re_init_vte(self, mean, std):
        vte = self.get_vte()
        rank0_print(BEGIN_LINE)
        rank0_print(f'[{datetime.now()}] Before re-initialization of vte: ')
        with deepspeed.zero.GatheredParameters([vte.weight]):
            rank0_print(f'vte.weight: {vte.weight}')
        with deepspeed.zero.GatheredParameters([vte.weight], modifier_rank=0):
            if not is_deepspeed_zero3_enabled() or deepspeed.comm.get_rank() == 0:
                vte.reset_parameters(mean, std)
        rank0_print(f'[{datetime.now()}] After re-initialization of vte:')
        with deepspeed.zero.GatheredParameters([vte.weight]):
            rank0_print(f'vte.weight: {vte.weight}')
        rank0_print(END_LINE)

    def get_monitor_tensors(self):
        monitor_tensors = dict(
            wte=self.get_wte().weight,
            lm_head=self.get_lm_head().weight,
            vte=self.get_vte().weight
        )
        monitor_tensors.update(
            {f'visual_tokenizer_{k}': v for k, v in self.get_visual_tokenizer().get_monitor_tensors().items()})
        return monitor_tensors

    def get_lm_head(self):
        return self.get_llm().get_output_embeddings()

    def get_llm(self):
        return self.llm

    def get_vte(self):
        return self.vte

    def get_wte(self):
        return self.llm.get_input_embeddings()

    def get_conversation_formatter(self) -> ConversationFormatter:
        if getattr(self, 'conversation_formatter', None) is None:
            self.conversation_formatter = getattr(import_module(".conversation_formatter", __package__),
                                                  self.config.conversation_formatter_class)(self.text_tokenizer)
        return self.conversation_formatter

    def forward(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, pixel_values: List[Optional[torch.Tensor]],
                labels: Optional[torch.Tensor] = None, **kwargs):
        _, inputs_embeds, labels, attention_mask = self.merge_multimodal(
            text_input_ids=input_ids,
            text_attention_masks=attention_mask,
            text_labels=labels,
            pixel_values=pixel_values,
            with_kv_cache=kwargs.get('past_key_values') is not None)
        return self.llm(inputs_embeds=inputs_embeds, labels=labels, attention_mask=attention_mask, **kwargs)

    def merge_multimodal(self, text_input_ids: torch.Tensor, text_attention_masks: torch.Tensor,
                         text_labels: Optional[torch.Tensor], pixel_values: List[Optional[torch.Tensor]],
                         with_kv_cache: bool = False):
        if with_kv_cache:
            return None, self.get_wte()(text_input_ids), text_labels, text_attention_masks
        if self.training:
            # When training, to be compatible with deepspeed zero, each sample has to include pixel_value tensor.
            # For text-only sample, one can simply use a full zero tensor as pixel_value, which will be ignored
            # (see below in this function); so, the gradient will not be affected.
            num_images = [x.shape[0] for x in pixel_values]
            visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values], dim=0))
            visual_embeds = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype),
                                        split_size_or_sections=num_images, dim=0)
            visual_input_ids = torch.split(torch.argmax(visual_tokens, dim=-1),
                                           split_size_or_sections=num_images, dim=0)
            visual_labels = [torch.full(x.shape, IGNORE_INDEX, dtype=torch.long) for x in visual_input_ids]
        else:
            # When inference, sample can include only text with `None` pixel_value
            num_images = [x.shape[0] if x is not None else 0 for x in pixel_values]
            if sum(num_images) > 0:
                visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values if x is not None], dim=0))
                visual_embeds = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype),
                                            split_size_or_sections=num_images, dim=0)
                visual_input_ids = torch.split(torch.argmax(visual_tokens, dim=-1),
                                               split_size_or_sections=num_images, dim=0)
                visual_labels = [torch.full(x.shape, IGNORE_INDEX, dtype=torch.long) for x in visual_input_ids]
            else:
                # just placeholders
                visual_embeds = [None] * len(num_images)
                visual_input_ids = [None] * len(num_images)
                visual_labels = [None] * len(num_images)
            # just placeholders
            text_labels = torch.full(text_input_ids.shape, IGNORE_INDEX, dtype=torch.long, device=text_input_ids.device)

        input_embeds = []
        attention_masks = []
        labels = []
        for text_input_id, text_label, text_attention_mask, visual_embed, visual_input_id, visual_label in zip(
                text_input_ids, text_labels, text_attention_masks, visual_embeds, visual_input_ids, visual_labels
        ):
            image_token_mask = torch.eq(text_input_id, IMAGE_TOKEN_INDEX)
            text_embed = self.get_wte()(torch.masked_fill(text_input_id, image_token_mask, 0))
            image_token_positions = torch.where(image_token_mask)[0].tolist()
            if len(image_token_positions) > 0:
                input_embed_parts = []
                attention_mask_parts = []
                label_parts = []
                prev_image_token_position = -1
                for index, image_token_position in enumerate(image_token_positions):
                    input_embed_parts.append(
                        text_embed[prev_image_token_position + 1:image_token_position, :])
                    label_parts.append(
                        text_label[prev_image_token_position + 1:image_token_position])
                    attention_mask_parts.append(
                        text_attention_mask[prev_image_token_position + 1:image_token_position])
                    input_embed_parts.append(visual_embed[index])
                    attention_mask_parts.append(
                        torch.ones_like(visual_label[index], device=text_label.device, dtype=torch.bool))
                    label_parts.append(visual_label[index].to(device=text_label.device))
                    prev_image_token_position = image_token_position
                if prev_image_token_position + 1 < text_input_id.shape[0]:
                    input_embed_parts.append(
                        text_embed[prev_image_token_position + 1:, :])
                    attention_mask_parts.append(
                        text_attention_mask[prev_image_token_position + 1:])
                    label_parts.append(
                        text_label[prev_image_token_position + 1:])
                input_embed = torch.cat(input_embed_parts, dim=0)
                attention_mask = torch.cat(attention_mask_parts, dim=0)
                label = torch.cat(label_parts, dim=0)
            else:
                input_embed = text_embed
                attention_mask = text_attention_mask
                label = text_label
                if self.training:
                    # Make visual_embed involved in the backward graph, to be compatible with deepspeed zero and ddp.
                    input_embed += torch.sum(visual_embed * 0.0)
            input_embeds.append(input_embed)
            attention_masks.append(attention_mask)
            labels.append(label)

        batch_input_embeds = torch.nn.utils.rnn.pad_sequence(input_embeds, batch_first=True, padding_value=0.0)[:,
                             :self.config.multimodal_max_length, :]
        batch_attention_mask = torch.nn.utils.rnn.pad_sequence(attention_masks, batch_first=True, padding_value=False)[
                               :,
                               :self.config.multimodal_max_length]
        batch_labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX)[:,
                       :self.config.multimodal_max_length]

        return visual_input_ids, batch_input_embeds, batch_labels, batch_attention_mask

    def save_pretrained(
            self,
            save_directory: Union[str, os.PathLike],
            is_main_process: bool = True,
            state_dict: Optional[dict] = None,
            save_function: Callable = torch.save,
            push_to_hub: bool = False,
            max_shard_size: Union[int, str] = "5GB",
            safe_serialization: bool = True,
            variant: Optional[str] = None,
            token: Optional[Union[str, bool]] = None,
            save_peft_format: bool = True,
            **kwargs,
    ):
        super().save_pretrained(save_directory,
                                is_main_process=is_main_process,
                                state_dict=state_dict,
                                save_function=save_function,
                                safe_serialization=safe_serialization)
        self.get_text_tokenizer().save_pretrained(save_directory)
        self.get_visual_tokenizer().get_image_processor().save_pretrained(save_directory)

        # uncomment the following will additionally save a separate visual tokenizer
        # visual_tokenizer_directory = os.path.join(save_directory, 'visual_tokenizer')
        # self.get_visual_tokenizer().save_pretrained(visual_tokenizer_directory,
        #                                             is_main_process=is_main_process,
        #                                             state_dict=None,
        #                                             save_function=save_function,
        #                                             safe_serialization=safe_serialization)
        # self.get_visual_tokenizer().get_image_processor().save_pretrained(visual_tokenizer_directory)

    # TODO: support batch generation
    def prepare_inputs_for_generation(
            self, input_ids, pixel_values, attention_mask, past_key_values=None, inputs_embeds=None, **kwargs):
        if past_key_values is not None:
            input_ids = input_ids[:, -1:]
            attention_mask = attention_mask[:, -1:]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
                "pixel_values": pixel_values
            }
        )
        return model_inputs