File size: 15,942 Bytes
a2db297 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
import os
from datetime import datetime
from importlib import import_module
from typing import List, Union, Callable, Optional
import deepspeed
import torch
from torch import Tensor, LongTensor, IntTensor
from torch.nn import init
from transformers import PreTrainedModel, AutoConfig, AutoModel, AutoTokenizer, AutoModelForCausalLM
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled, deepspeed_config
from .visual_tokenizer import ClipVisualTokenizer
from .configuration_ovis import OvisConfig
from .conversation_formatter import ConversationFormatter
from .utils import IGNORE_INDEX, IMAGE_TOKEN_INDEX, BEGIN_LINE, END_LINE, rank0_print
class VisualEmbedding(torch.nn.Embedding):
def forward(self, input: Tensor) -> Tensor:
if any((isinstance(input, LongTensor), isinstance(input, IntTensor))):
return super().forward(input)
return torch.matmul(input, self.weight)
def reset_parameters(self, mean=0., std=1.) -> None:
init.normal_(self.weight, mean=mean, std=std)
self._fill_padding_idx_with_zero()
class OvisPreTrainedModel(PreTrainedModel):
config_class = OvisConfig
base_model_prefix = "ovis"
class Ovis(OvisPreTrainedModel):
def __init__(self, config: OvisConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
if kwargs.get('train_from_scratch'):
self.llm = AutoModelForCausalLM.from_pretrained(kwargs['llm_name_or_path'], token=None) # add token for gated model
self.generation_config = self.llm.generation_config
self.config.llm_config = self.llm.config
self.config.hidden_size = self.llm.config.hidden_size # for deepspeed auto configuration
self.text_tokenizer = AutoTokenizer.from_pretrained(kwargs['llm_name_or_path'], token=None) # add token for gated model
if self.text_tokenizer.pad_token_id is None and kwargs.get('pad_token_id') is not None:
self.text_tokenizer.pad_token_id = kwargs['pad_token_id']
if kwargs.get('visual_tokenizer_pretrained_path'):
self.visual_tokenizer = AutoModel.from_pretrained(kwargs['visual_tokenizer_pretrained_path'],
image_processor_name_or_path=kwargs[
'visual_tokenizer_pretrained_path'])
else:
self.visual_tokenizer = AutoModel.from_config(self.config.visual_tokenizer_config,
train_from_scratch=True)
self.config.visual_tokenizer_config = self.visual_tokenizer.config
else:
self.llm = AutoModelForCausalLM.from_config(self.config.llm_config)
assert self.config.hidden_size == self.llm.config.hidden_size, "hidden size mismatch"
self.text_tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path)
self.visual_tokenizer = AutoModel.from_config(self.config.visual_tokenizer_config,
image_processor_name_or_path=self.config.name_or_path)
# initialize vte
if is_deepspeed_zero3_enabled():
with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
self.vte = VisualEmbedding(self.config.visual_tokenizer_config.vocab_size, self.config.hidden_size)
else:
self.visual_tokenizer.to(device=self.llm.device)
self.vte = VisualEmbedding(self.config.visual_tokenizer_config.vocab_size, self.config.hidden_size,
device=self.visual_tokenizer.device, dtype=self.visual_tokenizer.dtype)
def _merge_modules(modules_list: tuple):
merged_modules = []
for modules in modules_list:
merged_modules.extend(modules if modules else [])
return merged_modules
self._no_split_modules = _merge_modules((self.llm._no_split_modules, self.visual_tokenizer._no_split_modules))
self._skip_keys_device_placement = self.llm._skip_keys_device_placement
self._keep_in_fp32_modules = _merge_modules(
(self.llm._keep_in_fp32_modules, self.visual_tokenizer._keep_in_fp32_modules))
self.is_parallelizable = all((self.llm.is_parallelizable, self.visual_tokenizer.is_parallelizable))
self.supports_gradient_checkpointing = all(
(self.llm.supports_gradient_checkpointing, self.visual_tokenizer.supports_gradient_checkpointing))
self._supports_flash_attn_2 = all(
(self.llm._supports_flash_attn_2, self.visual_tokenizer._supports_flash_attn_2))
self._supports_sdpa = all((self.llm._supports_sdpa, self.visual_tokenizer._supports_sdpa))
self._supports_cache_class = all((self.llm._supports_cache_class, self.visual_tokenizer._supports_cache_class))
def get_text_tokenizer(self):
return self.text_tokenizer
def get_visual_tokenizer(self):
return self.visual_tokenizer
def re_init_vte(self, mean, std):
vte = self.get_vte()
rank0_print(BEGIN_LINE)
rank0_print(f'[{datetime.now()}] Before re-initialization of vte: ')
with deepspeed.zero.GatheredParameters([vte.weight]):
rank0_print(f'vte.weight: {vte.weight}')
with deepspeed.zero.GatheredParameters([vte.weight], modifier_rank=0):
if not is_deepspeed_zero3_enabled() or deepspeed.comm.get_rank() == 0:
vte.reset_parameters(mean, std)
rank0_print(f'[{datetime.now()}] After re-initialization of vte:')
with deepspeed.zero.GatheredParameters([vte.weight]):
rank0_print(f'vte.weight: {vte.weight}')
rank0_print(END_LINE)
def get_monitor_tensors(self):
monitor_tensors = dict(
wte=self.get_wte().weight,
lm_head=self.get_lm_head().weight,
vte=self.get_vte().weight
)
monitor_tensors.update(
{f'visual_tokenizer_{k}': v for k, v in self.get_visual_tokenizer().get_monitor_tensors().items()})
return monitor_tensors
def get_lm_head(self):
return self.get_llm().get_output_embeddings()
def get_llm(self):
return self.llm
def get_vte(self):
return self.vte
def get_wte(self):
return self.llm.get_input_embeddings()
def get_conversation_formatter(self) -> ConversationFormatter:
if getattr(self, 'conversation_formatter', None) is None:
self.conversation_formatter = getattr(import_module(".conversation_formatter", __package__),
self.config.conversation_formatter_class)(self.text_tokenizer)
return self.conversation_formatter
def forward(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, pixel_values: List[Optional[torch.Tensor]],
labels: Optional[torch.Tensor] = None, **kwargs):
_, inputs_embeds, labels, attention_mask = self.merge_multimodal(
text_input_ids=input_ids,
text_attention_masks=attention_mask,
text_labels=labels,
pixel_values=pixel_values,
with_kv_cache=kwargs.get('past_key_values') is not None)
return self.llm(inputs_embeds=inputs_embeds, labels=labels, attention_mask=attention_mask, **kwargs)
def merge_multimodal(self, text_input_ids: torch.Tensor, text_attention_masks: torch.Tensor,
text_labels: Optional[torch.Tensor], pixel_values: List[Optional[torch.Tensor]],
with_kv_cache: bool = False):
if with_kv_cache:
return None, self.get_wte()(text_input_ids), text_labels, text_attention_masks
if self.training:
# When training, to be compatible with deepspeed zero, each sample has to include pixel_value tensor.
# For text-only sample, one can simply use a full zero tensor as pixel_value, which will be ignored
# (see below in this function); so, the gradient will not be affected.
num_images = [x.shape[0] for x in pixel_values]
visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values], dim=0))
visual_embeds = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype),
split_size_or_sections=num_images, dim=0)
visual_input_ids = torch.split(torch.argmax(visual_tokens, dim=-1),
split_size_or_sections=num_images, dim=0)
visual_labels = [torch.full(x.shape, IGNORE_INDEX, dtype=torch.long) for x in visual_input_ids]
else:
# When inference, sample can include only text with `None` pixel_value
num_images = [x.shape[0] if x is not None else 0 for x in pixel_values]
if sum(num_images) > 0:
visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values if x is not None], dim=0))
visual_embeds = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype),
split_size_or_sections=num_images, dim=0)
visual_input_ids = torch.split(torch.argmax(visual_tokens, dim=-1),
split_size_or_sections=num_images, dim=0)
visual_labels = [torch.full(x.shape, IGNORE_INDEX, dtype=torch.long) for x in visual_input_ids]
else:
# just placeholders
visual_embeds = [None] * len(num_images)
visual_input_ids = [None] * len(num_images)
visual_labels = [None] * len(num_images)
# just placeholders
text_labels = torch.full(text_input_ids.shape, IGNORE_INDEX, dtype=torch.long, device=text_input_ids.device)
input_embeds = []
attention_masks = []
labels = []
for text_input_id, text_label, text_attention_mask, visual_embed, visual_input_id, visual_label in zip(
text_input_ids, text_labels, text_attention_masks, visual_embeds, visual_input_ids, visual_labels
):
image_token_mask = torch.eq(text_input_id, IMAGE_TOKEN_INDEX)
text_embed = self.get_wte()(torch.masked_fill(text_input_id, image_token_mask, 0))
image_token_positions = torch.where(image_token_mask)[0].tolist()
if len(image_token_positions) > 0:
input_embed_parts = []
attention_mask_parts = []
label_parts = []
prev_image_token_position = -1
for index, image_token_position in enumerate(image_token_positions):
input_embed_parts.append(
text_embed[prev_image_token_position + 1:image_token_position, :])
label_parts.append(
text_label[prev_image_token_position + 1:image_token_position])
attention_mask_parts.append(
text_attention_mask[prev_image_token_position + 1:image_token_position])
input_embed_parts.append(visual_embed[index])
attention_mask_parts.append(
torch.ones_like(visual_label[index], device=text_label.device, dtype=torch.bool))
label_parts.append(visual_label[index].to(device=text_label.device))
prev_image_token_position = image_token_position
if prev_image_token_position + 1 < text_input_id.shape[0]:
input_embed_parts.append(
text_embed[prev_image_token_position + 1:, :])
attention_mask_parts.append(
text_attention_mask[prev_image_token_position + 1:])
label_parts.append(
text_label[prev_image_token_position + 1:])
input_embed = torch.cat(input_embed_parts, dim=0)
attention_mask = torch.cat(attention_mask_parts, dim=0)
label = torch.cat(label_parts, dim=0)
else:
input_embed = text_embed
attention_mask = text_attention_mask
label = text_label
if self.training:
# Make visual_embed involved in the backward graph, to be compatible with deepspeed zero and ddp.
input_embed += torch.sum(visual_embed * 0.0)
input_embeds.append(input_embed)
attention_masks.append(attention_mask)
labels.append(label)
batch_input_embeds = torch.nn.utils.rnn.pad_sequence(input_embeds, batch_first=True, padding_value=0.0)[:,
:self.config.multimodal_max_length, :]
batch_attention_mask = torch.nn.utils.rnn.pad_sequence(attention_masks, batch_first=True, padding_value=False)[
:,
:self.config.multimodal_max_length]
batch_labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX)[:,
:self.config.multimodal_max_length]
return visual_input_ids, batch_input_embeds, batch_labels, batch_attention_mask
def save_pretrained(
self,
save_directory: Union[str, os.PathLike],
is_main_process: bool = True,
state_dict: Optional[dict] = None,
save_function: Callable = torch.save,
push_to_hub: bool = False,
max_shard_size: Union[int, str] = "5GB",
safe_serialization: bool = True,
variant: Optional[str] = None,
token: Optional[Union[str, bool]] = None,
save_peft_format: bool = True,
**kwargs,
):
super().save_pretrained(save_directory,
is_main_process=is_main_process,
state_dict=state_dict,
save_function=save_function,
safe_serialization=safe_serialization)
self.get_text_tokenizer().save_pretrained(save_directory)
self.get_visual_tokenizer().get_image_processor().save_pretrained(save_directory)
# uncomment the following will additionally save a separate visual tokenizer
# visual_tokenizer_directory = os.path.join(save_directory, 'visual_tokenizer')
# self.get_visual_tokenizer().save_pretrained(visual_tokenizer_directory,
# is_main_process=is_main_process,
# state_dict=None,
# save_function=save_function,
# safe_serialization=safe_serialization)
# self.get_visual_tokenizer().get_image_processor().save_pretrained(visual_tokenizer_directory)
# TODO: support batch generation
def prepare_inputs_for_generation(
self, input_ids, pixel_values, attention_mask, past_key_values=None, inputs_embeds=None, **kwargs):
if past_key_values is not None:
input_ids = input_ids[:, -1:]
attention_mask = attention_mask[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"pixel_values": pixel_values
}
)
return model_inputs
|