File size: 11,562 Bytes
578731e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import logging
from abc import ABC, abstractmethod
from typing import List, Dict, Union, Optional

import torch
from transformers import PretrainedConfig, AutoConfig

IGNORE_INDEX = -100
IMAGE_TOKEN_INDEX = -200
IMAGE_TOKEN = "<image>"


# ----------------------------------------------------------------------
#                     Visual Tokenizer Configuration
# ----------------------------------------------------------------------
class BaseVisualTokenizerConfig(PretrainedConfig):
    def __init__(
        self,
        vocab_size=16384,
        tokenize_function="softmax",
        tau=1.0,
        depths=None,
        use_indicators=False,
        drop_cls_token=False,
        backbone_config: Optional[Union[PretrainedConfig, dict]] = None,
        hidden_stride: int = 1,
        hd_booster: Optional[str] = None,
        **kwargs
    ):
        super().__init__(**kwargs)
        self.vocab_size = vocab_size
        self.tokenize_function = tokenize_function
        self.tau = tau
        if isinstance(depths, str):
            depths = [int(x) for x in depths.split('|')]
        self.depths = depths
        self.backbone_kwargs = {}
        self.use_indicators = use_indicators
        self.drop_cls_token = drop_cls_token
        if backbone_config is not None:
            assert isinstance(backbone_config, (PretrainedConfig, dict)), \
                (f"expect `backbone_config` to be instance of PretrainedConfig or dict,"
                 f" but got {type(backbone_config)} type")
            if not isinstance(backbone_config, PretrainedConfig):
                model_type = backbone_config['model_type']
                backbone_config.pop('model_type')
                backbone_config = AutoConfig.for_model(model_type, **backbone_config)
        self.backbone_config = backbone_config
        self.hidden_stride = hidden_stride
        self.hd_booster = hd_booster


class ClipVisualTokenizerConfig(BaseVisualTokenizerConfig):
    model_type = "clip_visual_tokenizer"

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        if self.depths:
            assert len(self.depths) == 1
            self.backbone_kwargs['num_hidden_layers'] = self.depths[0]


class SiglipVisualTokenizerConfig(BaseVisualTokenizerConfig):
    model_type = "siglip_visual_tokenizer"

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        if self.drop_cls_token:
            logging.warning(
                f'SiglipVisionModel has no cls token,'
                f' so `drop_cls_token=True` is ignored and reset to `False`')
            self.drop_cls_token = False
        if self.depths:
            assert len(self.depths) == 1
            self.backbone_kwargs['num_hidden_layers'] = self.depths[0]


AutoConfig.register("clip_visual_tokenizer", ClipVisualTokenizerConfig)
AutoConfig.register("siglip_visual_tokenizer", SiglipVisualTokenizerConfig)


# ----------------------------------------------------------------------
#                           Ovis Configuration
# ----------------------------------------------------------------------
class OvisConfig(PretrainedConfig):
    model_type = "ovis"

    def __init__(
        self,
        llm_config: Optional[Union[PretrainedConfig, dict]] = None,
        visual_tokenizer_config: Optional[Union[PretrainedConfig, dict]] = None,
        multimodal_max_length=2048,
        hidden_size=None,
        conversation_formatter_class=None,
        **kwargs
    ):
        super().__init__(**kwargs)
        if llm_config is not None:
            assert isinstance(llm_config, (PretrainedConfig, dict)), \
                (f"expect `llm_config` to be instance of PretrainedConfig or dict,"
                 f" but got {type(llm_config)} type")
            if not isinstance(llm_config, PretrainedConfig):
                model_type = llm_config['model_type']
                llm_config.pop('model_type')
                llm_config = AutoConfig.for_model(model_type, **llm_config)
        self.llm_config = llm_config
        if visual_tokenizer_config is not None:
            assert isinstance(visual_tokenizer_config, (PretrainedConfig, dict)), \
                (f"expect `visual_tokenizer_config` to be instance of PretrainedConfig or dict,"
                 f" but got {type(visual_tokenizer_config)} type")
            if not isinstance(visual_tokenizer_config, PretrainedConfig):
                model_type = visual_tokenizer_config['model_type']
                visual_tokenizer_config.pop('model_type')
                visual_tokenizer_config = AutoConfig.for_model(model_type, **visual_tokenizer_config)
        self.visual_tokenizer_config = visual_tokenizer_config
        self.multimodal_max_length = multimodal_max_length
        self.hidden_size = hidden_size
        self.conversation_formatter_class = conversation_formatter_class


# ----------------------------------------------------------------------
#                         Conversation Formatter
# ----------------------------------------------------------------------
class ConversationFormatter(ABC):
    support_tokenizer_types = None

    def __init__(self, tokenizer):
        tokenizer_type = type(tokenizer).__name__
        assert tokenizer_type in self.support_tokenizer_types, \
            (f'Invalid tokenizer type, expected one from `{self.support_tokenizer_types}`,'
             f' but got `{tokenizer_type}`')
        self.tokenizer = tokenizer
        self.image_symbol = IMAGE_TOKEN
        self.image_token_index = IMAGE_TOKEN_INDEX
        self.ignore_index = IGNORE_INDEX

    def _tokenize_with_image_symbol(self, text):
        text_chunks = [self.tokenizer(chunk, add_special_tokens=False).input_ids for chunk in
                       text.split(self.image_symbol)]
        token_ids = []
        num_chuck = len(text_chunks)
        for i, chunk in enumerate(text_chunks):
            token_ids.extend(chunk)
            if i < num_chuck - 1:
                token_ids.append(self.image_token_index)
        return token_ids

    @abstractmethod
    def format(self, conversations: List[Dict], generation_preface=None):
        pass

    @abstractmethod
    def format_query(self, query, generation_preface=""):
        pass


class QwenConversationFormatter(ConversationFormatter):
    support_tokenizer_types = ['QWenTokenizer', 'Qwen2TokenizerFast']

    def __init__(self, tokenizer):
        super().__init__(tokenizer)
        self.from2role = {
            "system": "<|im_start|>system\n",
            "human": "<|im_start|>user\n",
            "gpt": "<|im_start|>assistant\n",
        }
        self.gpt_token_num = None
        self.im_end = "<|im_end|>\n"
        self.default_system_prompt = "You are a helpful assistant."

    def format(self, conversations: List[Dict], generation_preface=None):
        if self.gpt_token_num is None:
            self.gpt_token_num = len(
                self.tokenizer(self.from2role["gpt"], add_special_tokens=False).input_ids)

        if conversations[0]["from"] != "system":
            conversations.insert(0, {
                "from": "system",
                "value": self.default_system_prompt
            })

        if generation_preface is not None:
            conversations.append({
                "from": "gpt",
                "value": generation_preface
            })

        prompt = ""
        input_ids = []
        labels = []
        num_conversation = len(conversations)
        for i, conversation in enumerate(conversations):
            frm = conversation["from"]
            role = self.from2role[frm]
            message = conversation["value"]
            text = role + message
            if i < num_conversation - 1 or generation_preface is None:
                text += self.im_end
            prompt += text
            token_ids = self._tokenize_with_image_symbol(text)
            input_ids.extend(token_ids)
            label_ids = [self.ignore_index] * len(token_ids)
            if frm == "gpt" and generation_preface is None:
                # learning `\n` following `im_end` is meaningless, so the last `\n` token is ignored in label
                label_ids[self.gpt_token_num:-1] = token_ids[self.gpt_token_num:-1]
            labels.extend(label_ids)

        assert self._tokenize_with_image_symbol(prompt) == input_ids
        assert len(input_ids) == len(labels)
        input_ids = torch.tensor(input_ids, dtype=torch.long)
        labels = torch.tensor(labels, dtype=torch.long)

        return prompt, input_ids, labels

    def format_query(self, query, generation_preface=""):
        prompt, input_ids, _ = self.format([{
            "from": "human",
            "value": query
        }], generation_preface=generation_preface)

        return prompt, input_ids


class Llama3ConversationFormatter(ConversationFormatter):
    support_tokenizer_types = ['PreTrainedTokenizerFast']

    def __init__(self, tokenizer):
        super().__init__(tokenizer)
        self.from2role = {
            "system": "<|start_header_id|>system<|end_header_id|>\n\n",
            "human": "<|start_header_id|>user<|end_header_id|>\n\n",
            "gpt": "<|start_header_id|>assistant<|end_header_id|>\n\n",
        }
        self.gpt_token_num = None
        self.im_end = "<|eot_id|>"
        self.default_system_prompt = "You are a helpful and honest multimodal assistant."
        self.bos_token = "<|begin_of_text|>"
        self.bos_token_ids = None

    def format(self, conversations: List[Dict], generation_preface=None):
        if self.gpt_token_num is None:
            self.gpt_token_num = len(
                self.tokenizer(self.from2role["gpt"], add_special_tokens=False).input_ids)

        if self.bos_token_ids is None:
            self.bos_token_ids = self.tokenizer(self.bos_token, add_special_tokens=False).input_ids

        if conversations[0]["from"] != "system":
            conversations.insert(0, {
                "from": "system",
                "value": self.default_system_prompt
            })

        if generation_preface is not None:
            conversations.append({
                "from": "gpt",
                "value": generation_preface
            })

        prompt = "" + self.bos_token
        input_ids = [] + self.bos_token_ids
        labels = [] + [IGNORE_INDEX] * len(input_ids)
        num_conversation = len(conversations)
        for i, conversation in enumerate(conversations):
            frm = conversation["from"]
            role = self.from2role[frm]
            message = conversation["value"].strip()
            text = role + message
            if i < num_conversation - 1 or generation_preface is None:
                text += self.im_end
            prompt += text
            token_ids = self._tokenize_with_image_symbol(text)
            input_ids.extend(token_ids)
            label_ids = [self.ignore_index] * len(token_ids)
            if frm == "gpt":
                label_ids[self.gpt_token_num:] = token_ids[self.gpt_token_num:]
            labels.extend(label_ids)

        assert self._tokenize_with_image_symbol(prompt) == input_ids
        assert len(input_ids) == len(labels)
        input_ids = torch.tensor(input_ids, dtype=torch.long)
        labels = torch.tensor(labels, dtype=torch.long)

        return prompt, input_ids, labels

    def format_query(self, query, generation_preface=""):
        prompt, input_ids, _ = self.format([{
            "from": "human",
            "value": query
        }], generation_preface=generation_preface)

        return prompt, input_ids