|
import logging |
|
from abc import ABC, abstractmethod |
|
from typing import List, Dict, Union, Optional |
|
|
|
import torch |
|
from transformers import PretrainedConfig, AutoConfig |
|
|
|
IGNORE_INDEX = -100 |
|
IMAGE_TOKEN_INDEX = -200 |
|
IMAGE_TOKEN = "<image>" |
|
|
|
|
|
|
|
|
|
|
|
class BaseVisualTokenizerConfig(PretrainedConfig): |
|
def __init__( |
|
self, |
|
vocab_size=16384, |
|
tokenize_function="softmax", |
|
tau=1.0, |
|
depths=None, |
|
use_indicators=False, |
|
drop_cls_token=False, |
|
backbone_config: Optional[Union[PretrainedConfig, dict]] = None, |
|
hidden_stride: int = 1, |
|
hd_booster: Optional[str] = None, |
|
**kwargs |
|
): |
|
super().__init__(**kwargs) |
|
self.vocab_size = vocab_size |
|
self.tokenize_function = tokenize_function |
|
self.tau = tau |
|
if isinstance(depths, str): |
|
depths = [int(x) for x in depths.split('|')] |
|
self.depths = depths |
|
self.backbone_kwargs = {} |
|
self.use_indicators = use_indicators |
|
self.drop_cls_token = drop_cls_token |
|
if backbone_config is not None: |
|
assert isinstance(backbone_config, (PretrainedConfig, dict)), \ |
|
(f"expect `backbone_config` to be instance of PretrainedConfig or dict," |
|
f" but got {type(backbone_config)} type") |
|
if not isinstance(backbone_config, PretrainedConfig): |
|
model_type = backbone_config['model_type'] |
|
backbone_config.pop('model_type') |
|
backbone_config = AutoConfig.for_model(model_type, **backbone_config) |
|
self.backbone_config = backbone_config |
|
self.hidden_stride = hidden_stride |
|
self.hd_booster = hd_booster |
|
|
|
|
|
class ClipVisualTokenizerConfig(BaseVisualTokenizerConfig): |
|
model_type = "clip_visual_tokenizer" |
|
|
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
if self.depths: |
|
assert len(self.depths) == 1 |
|
self.backbone_kwargs['num_hidden_layers'] = self.depths[0] |
|
|
|
|
|
class SiglipVisualTokenizerConfig(BaseVisualTokenizerConfig): |
|
model_type = "siglip_visual_tokenizer" |
|
|
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
if self.drop_cls_token: |
|
logging.warning( |
|
f'SiglipVisionModel has no cls token,' |
|
f' so `drop_cls_token=True` is ignored and reset to `False`') |
|
self.drop_cls_token = False |
|
if self.depths: |
|
assert len(self.depths) == 1 |
|
self.backbone_kwargs['num_hidden_layers'] = self.depths[0] |
|
|
|
|
|
AutoConfig.register("clip_visual_tokenizer", ClipVisualTokenizerConfig) |
|
AutoConfig.register("siglip_visual_tokenizer", SiglipVisualTokenizerConfig) |
|
|
|
|
|
|
|
|
|
|
|
class OvisConfig(PretrainedConfig): |
|
model_type = "ovis" |
|
|
|
def __init__( |
|
self, |
|
llm_config: Optional[Union[PretrainedConfig, dict]] = None, |
|
visual_tokenizer_config: Optional[Union[PretrainedConfig, dict]] = None, |
|
multimodal_max_length=2048, |
|
hidden_size=None, |
|
conversation_formatter_class=None, |
|
**kwargs |
|
): |
|
super().__init__(**kwargs) |
|
if llm_config is not None: |
|
assert isinstance(llm_config, (PretrainedConfig, dict)), \ |
|
(f"expect `llm_config` to be instance of PretrainedConfig or dict," |
|
f" but got {type(llm_config)} type") |
|
if not isinstance(llm_config, PretrainedConfig): |
|
model_type = llm_config['model_type'] |
|
llm_config.pop('model_type') |
|
llm_config = AutoConfig.for_model(model_type, **llm_config) |
|
self.llm_config = llm_config |
|
if visual_tokenizer_config is not None: |
|
assert isinstance(visual_tokenizer_config, (PretrainedConfig, dict)), \ |
|
(f"expect `visual_tokenizer_config` to be instance of PretrainedConfig or dict," |
|
f" but got {type(visual_tokenizer_config)} type") |
|
if not isinstance(visual_tokenizer_config, PretrainedConfig): |
|
model_type = visual_tokenizer_config['model_type'] |
|
visual_tokenizer_config.pop('model_type') |
|
visual_tokenizer_config = AutoConfig.for_model(model_type, **visual_tokenizer_config) |
|
self.visual_tokenizer_config = visual_tokenizer_config |
|
self.multimodal_max_length = multimodal_max_length |
|
self.hidden_size = hidden_size |
|
self.conversation_formatter_class = conversation_formatter_class |
|
|
|
|
|
|
|
|
|
|
|
class ConversationFormatter(ABC): |
|
support_tokenizer_types = None |
|
|
|
def __init__(self, tokenizer): |
|
tokenizer_type = type(tokenizer).__name__ |
|
assert tokenizer_type in self.support_tokenizer_types, \ |
|
(f'Invalid tokenizer type, expected one from `{self.support_tokenizer_types}`,' |
|
f' but got `{tokenizer_type}`') |
|
self.tokenizer = tokenizer |
|
self.image_symbol = IMAGE_TOKEN |
|
self.image_token_index = IMAGE_TOKEN_INDEX |
|
self.ignore_index = IGNORE_INDEX |
|
|
|
def _tokenize_with_image_symbol(self, text): |
|
text_chunks = [self.tokenizer(chunk, add_special_tokens=False).input_ids for chunk in |
|
text.split(self.image_symbol)] |
|
token_ids = [] |
|
num_chuck = len(text_chunks) |
|
for i, chunk in enumerate(text_chunks): |
|
token_ids.extend(chunk) |
|
if i < num_chuck - 1: |
|
token_ids.append(self.image_token_index) |
|
return token_ids |
|
|
|
@abstractmethod |
|
def format(self, conversations: List[Dict], generation_preface=None): |
|
pass |
|
|
|
@abstractmethod |
|
def format_query(self, query, generation_preface=""): |
|
pass |
|
|
|
|
|
class QwenConversationFormatter(ConversationFormatter): |
|
support_tokenizer_types = ['QWenTokenizer', 'Qwen2TokenizerFast'] |
|
|
|
def __init__(self, tokenizer): |
|
super().__init__(tokenizer) |
|
self.from2role = { |
|
"system": "<|im_start|>system\n", |
|
"human": "<|im_start|>user\n", |
|
"gpt": "<|im_start|>assistant\n", |
|
} |
|
self.gpt_token_num = None |
|
self.im_end = "<|im_end|>\n" |
|
self.default_system_prompt = "You are a helpful assistant." |
|
|
|
def format(self, conversations: List[Dict], generation_preface=None): |
|
if self.gpt_token_num is None: |
|
self.gpt_token_num = len( |
|
self.tokenizer(self.from2role["gpt"], add_special_tokens=False).input_ids) |
|
|
|
if conversations[0]["from"] != "system": |
|
conversations.insert(0, { |
|
"from": "system", |
|
"value": self.default_system_prompt |
|
}) |
|
|
|
if generation_preface is not None: |
|
conversations.append({ |
|
"from": "gpt", |
|
"value": generation_preface |
|
}) |
|
|
|
prompt = "" |
|
input_ids = [] |
|
labels = [] |
|
num_conversation = len(conversations) |
|
for i, conversation in enumerate(conversations): |
|
frm = conversation["from"] |
|
role = self.from2role[frm] |
|
message = conversation["value"] |
|
text = role + message |
|
if i < num_conversation - 1 or generation_preface is None: |
|
text += self.im_end |
|
prompt += text |
|
token_ids = self._tokenize_with_image_symbol(text) |
|
input_ids.extend(token_ids) |
|
label_ids = [self.ignore_index] * len(token_ids) |
|
if frm == "gpt" and generation_preface is None: |
|
|
|
label_ids[self.gpt_token_num:-1] = token_ids[self.gpt_token_num:-1] |
|
labels.extend(label_ids) |
|
|
|
assert self._tokenize_with_image_symbol(prompt) == input_ids |
|
assert len(input_ids) == len(labels) |
|
input_ids = torch.tensor(input_ids, dtype=torch.long) |
|
labels = torch.tensor(labels, dtype=torch.long) |
|
|
|
return prompt, input_ids, labels |
|
|
|
def format_query(self, query, generation_preface=""): |
|
prompt, input_ids, _ = self.format([{ |
|
"from": "human", |
|
"value": query |
|
}], generation_preface=generation_preface) |
|
|
|
return prompt, input_ids |
|
|
|
|
|
class Llama3ConversationFormatter(ConversationFormatter): |
|
support_tokenizer_types = ['PreTrainedTokenizerFast'] |
|
|
|
def __init__(self, tokenizer): |
|
super().__init__(tokenizer) |
|
self.from2role = { |
|
"system": "<|start_header_id|>system<|end_header_id|>\n\n", |
|
"human": "<|start_header_id|>user<|end_header_id|>\n\n", |
|
"gpt": "<|start_header_id|>assistant<|end_header_id|>\n\n", |
|
} |
|
self.gpt_token_num = None |
|
self.im_end = "<|eot_id|>" |
|
self.default_system_prompt = "You are a helpful and honest multimodal assistant." |
|
self.bos_token = "<|begin_of_text|>" |
|
self.bos_token_ids = None |
|
|
|
def format(self, conversations: List[Dict], generation_preface=None): |
|
if self.gpt_token_num is None: |
|
self.gpt_token_num = len( |
|
self.tokenizer(self.from2role["gpt"], add_special_tokens=False).input_ids) |
|
|
|
if self.bos_token_ids is None: |
|
self.bos_token_ids = self.tokenizer(self.bos_token, add_special_tokens=False).input_ids |
|
|
|
if conversations[0]["from"] != "system": |
|
conversations.insert(0, { |
|
"from": "system", |
|
"value": self.default_system_prompt |
|
}) |
|
|
|
if generation_preface is not None: |
|
conversations.append({ |
|
"from": "gpt", |
|
"value": generation_preface |
|
}) |
|
|
|
prompt = "" + self.bos_token |
|
input_ids = [] + self.bos_token_ids |
|
labels = [] + [IGNORE_INDEX] * len(input_ids) |
|
num_conversation = len(conversations) |
|
for i, conversation in enumerate(conversations): |
|
frm = conversation["from"] |
|
role = self.from2role[frm] |
|
message = conversation["value"].strip() |
|
text = role + message |
|
if i < num_conversation - 1 or generation_preface is None: |
|
text += self.im_end |
|
prompt += text |
|
token_ids = self._tokenize_with_image_symbol(text) |
|
input_ids.extend(token_ids) |
|
label_ids = [self.ignore_index] * len(token_ids) |
|
if frm == "gpt": |
|
label_ids[self.gpt_token_num:] = token_ids[self.gpt_token_num:] |
|
labels.extend(label_ids) |
|
|
|
assert self._tokenize_with_image_symbol(prompt) == input_ids |
|
assert len(input_ids) == len(labels) |
|
input_ids = torch.tensor(input_ids, dtype=torch.long) |
|
labels = torch.tensor(labels, dtype=torch.long) |
|
|
|
return prompt, input_ids, labels |
|
|
|
def format_query(self, query, generation_preface=""): |
|
prompt, input_ids, _ = self.format([{ |
|
"from": "human", |
|
"value": query |
|
}], generation_preface=generation_preface) |
|
|
|
return prompt, input_ids |
|
|