--- license: apache-2.0 datasets: - AIDC-AI/Ovis-dataset library_name: transformers tags: - MLLM pipeline_tag: image-text-to-text --- ## Introduction Ovis is a novel Multimodal Large Language Model (MLLM) architecture, designed to structurally align visual and textual embeddings. For a comprehensive introduction, please refer to [Ovis paper](https://arxiv.org/abs/2405.20797) and [Ovis GitHub](https://github.com/AIDC-AI/Ovis).
## Model As always, Ovis1.5 remains fully open-source: we release the training datasets, training & inference codes, and model weights for **reproducible transparency** and community collaboration. | Ovis MLLMs | ViT | LLM | Training Datasets | Code | Model Weights | |:-------------------------|:-----------:|:------------------:|:-------------------------------------------------------------------:|:-------------------------------------------:|:----------------------------------------------------------------:| | Ovis1.5-Llama3-8B | Siglip-400M | Llama3-8B-Instruct | [Huggingface](https://huggingface.co/datasets/AIDC-AI/Ovis-dataset) | [Github](https://github.com/AIDC-AI/Ovis) | [Huggingface](https://huggingface.co/AIDC-AI/Ovis1.5-Llama3-8B) | | Ovis1.5-Gemma2-9B | Siglip-400M | Gemma2-9B-It | [Huggingface](https://huggingface.co/datasets/AIDC-AI/Ovis-dataset) | [Github](https://github.com/AIDC-AI/Ovis) | [Huggingface](https://huggingface.co/AIDC-AI/Ovis1.5-Gemma2-9B) | ## Performance We evaluate Ovis1.5 across various multimodal benchmarks using [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) and compare its performance to leading MLLMs with similar parameter scales. | | MiniCPM-Llama3-V2.5 | GLM-4V-9B | Ovis1.5-Llama3-8B | Ovis1.5-Gemma2-9B | |:------------------|--------------------:|----------:|------------------:|------------------:| | Open Weights | ✅ | ✅ | ✅ | ✅ | | Open Datasets | ❌ | ❌ | ✅ | ✅ | | MMTBench-VAL | 57.6 | 48.8 | 60.7 | **62.7** | | MMBench-EN-V1.1 | 74 | 68.7 | **78.2** | 78.0 | | MMBench-CN-V1.1 | 70.1 | 67.1 | **75.2** | 75.1 | | MMStar | 51.8 | 54.8 | 57.2 | **58.7** | | MMMU-Val | 45.8 | 46.9 | 48.6 | **49.8** | | MathVista-Mini | 54.3 | 51.1 | 62.4 | **65.7** | | HallusionBenchAvg | 42.4 | 45 | 44.5 | **48.0** | | AI2D | 78.4 | 71.2 | 82.5 | **84.7** | | OCRBench | 725 | **776** | 743 | 756 | | MMVet | 52.8 | **58** | 52.2 | 56.5 | | RealWorldQA | 63.5 | 66 | 64.6 | **66.9** | | CharXiv Reasoning | 24.9 | - | 28.2 | **28.4** | | CharXiv Descriptive | 59.3 | - | 60.2 | **62.6** | ## Usage Below is a code snippet to run Ovis with multimodal inputs. For additional usage instructions, including inference wrapper and Gradio UI, please refer to [Ovis GitHub](https://github.com/AIDC-AI/Ovis?tab=readme-ov-file#inference). ```bash pip install torch==2.1.0 transformers==4.42.4 pillow==10.3.0 ``` ```python import torch from PIL import Image from transformers import AutoModelForCausalLM # load model model = AutoModelForCausalLM.from_pretrained("AIDC-AI/Ovis1.5-Llama3-8B", torch_dtype=torch.bfloat16, multimodal_max_length=8192, trust_remote_code=True).cuda() text_tokenizer = model.get_text_tokenizer() visual_tokenizer = model.get_visual_tokenizer() conversation_formatter = model.get_conversation_formatter() # enter image path and prompt image_path = input("Enter image path: ") image = Image.open(image_path) text = input("Enter prompt: ") query = f'\n{text}' prompt, input_ids = conversation_formatter.format_query(query) input_ids = torch.unsqueeze(input_ids, dim=0).to(device=model.device) attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id).to(device=model.device) pixel_values = [visual_tokenizer.preprocess_image(image).to( dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)] # generate output with torch.inference_mode(): gen_kwargs = dict( max_new_tokens=1024, do_sample=False, top_p=None, top_k=None, temperature=None, repetition_penalty=None, eos_token_id=model.generation_config.eos_token_id, pad_token_id=text_tokenizer.pad_token_id, use_cache=True ) output_ids = model.generate(input_ids, pixel_values=pixel_values, attention_mask=attention_mask, **gen_kwargs)[0] output = text_tokenizer.decode(output_ids, skip_special_tokens=True) print(f'Output: {output}') ``` ## Citation If you find Ovis useful, please cite the paper ``` @article{lu2024ovis, title={Ovis: Structural Embedding Alignment for Multimodal Large Language Model}, author={Shiyin Lu and Yang Li and Qing-Guo Chen and Zhao Xu and Weihua Luo and Kaifu Zhang and Han-Jia Ye}, year={2024}, journal={arXiv:2405.20797} } ``` ## License The project is licensed under the Apache 2.0 License and is restricted to uses that comply with the license agreements of Qwen, Llama3, Clip, and Siglip.