File size: 8,186 Bytes
33a6fa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
from abc import ABC, abstractmethod
from typing import List, Dict, Union, Optional
from transformers import PretrainedConfig, AutoConfig
IGNORE_ID = -100
IMAGE_TOKEN_ID = -200
IMAGE_TOKEN = "<image>"
IMAGE_ATOM_ID = -300
IMAGE_INDICATOR_IDS = [-301, -302, -303, -304, -305]
# ----------------------------------------------------------------------
# Visual Tokenizer Configuration
# ----------------------------------------------------------------------
class BaseVisualTokenizerConfig(PretrainedConfig):
def __init__(
self,
vocab_size=16384,
tokenize_function="softmax",
tau=1.0,
depths=None,
drop_cls_token=False,
backbone_config: Optional[Union[PretrainedConfig, dict]] = None,
hidden_stride: int = 1,
**kwargs
):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.tokenize_function = tokenize_function
self.tau = tau
if isinstance(depths, str):
depths = [int(x) for x in depths.split('|')]
self.depths = depths
self.backbone_kwargs = {}
self.drop_cls_token = drop_cls_token
if backbone_config is not None:
assert isinstance(backbone_config, (PretrainedConfig, dict)), \
f"expect `backbone_config` to be instance of PretrainedConfig or dict, but got {type(backbone_config)} type"
if not isinstance(backbone_config, PretrainedConfig):
model_type = backbone_config['model_type']
backbone_config.pop('model_type')
backbone_config = AutoConfig.for_model(model_type, **backbone_config)
self.backbone_config = backbone_config
self.hidden_stride = hidden_stride
class SiglipVisualTokenizerConfig(BaseVisualTokenizerConfig):
model_type = "siglip_visual_tokenizer"
def __init__(self, **kwargs):
super().__init__(**kwargs)
if self.drop_cls_token:
self.drop_cls_token = False
if self.depths:
assert len(self.depths) == 1
self.backbone_kwargs['num_hidden_layers'] = self.depths[0]
AutoConfig.register("siglip_visual_tokenizer", SiglipVisualTokenizerConfig)
# ----------------------------------------------------------------------
# Ovis Configuration
# ----------------------------------------------------------------------
class OvisConfig(PretrainedConfig):
model_type = "ovis"
def __init__(
self,
llm_config: Optional[Union[PretrainedConfig, dict]] = None,
visual_tokenizer_config: Optional[Union[PretrainedConfig, dict]] = None,
multimodal_max_length=8192,
hidden_size=None,
conversation_formatter_class=None,
llm_attn_implementation=None,
disable_tie_weight=False,
**kwargs
):
super().__init__(**kwargs)
if llm_config is not None:
assert isinstance(llm_config, (PretrainedConfig, dict)), \
f"expect `llm_config` to be instance of PretrainedConfig or dict, but got {type(llm_config)} type"
if not isinstance(llm_config, PretrainedConfig):
model_type = llm_config['model_type']
llm_config.pop('model_type')
llm_config = AutoConfig.for_model(model_type, **llm_config)
self.llm_config = llm_config
if visual_tokenizer_config is not None:
assert isinstance(visual_tokenizer_config, (PretrainedConfig, dict)), \
f"expect `visual_tokenizer_config` to be instance of PretrainedConfig or dict, but got {type(visual_tokenizer_config)} type"
if not isinstance(visual_tokenizer_config, PretrainedConfig):
model_type = visual_tokenizer_config['model_type']
visual_tokenizer_config.pop('model_type')
visual_tokenizer_config = AutoConfig.for_model(model_type, **visual_tokenizer_config)
self.visual_tokenizer_config = visual_tokenizer_config
self.multimodal_max_length = multimodal_max_length
self.hidden_size = hidden_size
self.conversation_formatter_class = conversation_formatter_class
self.llm_attn_implementation = llm_attn_implementation
self.disable_tie_weight = disable_tie_weight
# ----------------------------------------------------------------------
# Conversation Formatter
# ----------------------------------------------------------------------
class ConversationFormatter(ABC):
support_tokenizer_types = None
def __init__(self, tokenizer):
tokenizer_type = type(tokenizer).__name__
assert tokenizer_type in self.support_tokenizer_types, \
f'Invalid tokenizer type, expected one from `{self.support_tokenizer_types}`, but got `{tokenizer_type}`'
self.tokenizer = tokenizer
self.image_token = IMAGE_TOKEN
self.image_token_id = IMAGE_TOKEN_ID
self.ignore_id = IGNORE_ID
def _tokenize_with_image_symbol(self, text):
text_chunks = [self.tokenizer(chunk, add_special_tokens=False).input_ids for chunk in
text.split(self.image_token)]
token_ids = []
num_chuck = len(text_chunks)
for i, chunk in enumerate(text_chunks):
token_ids.extend(chunk)
if i < num_chuck - 1:
token_ids.append(self.image_token_id)
return token_ids
@abstractmethod
def format(self, conversations: List[Dict], generation_preface=None):
pass
@abstractmethod
def format_query(self, query, generation_preface=""):
pass
class GemmaConversationFormatter(ConversationFormatter):
support_tokenizer_types = ['GemmaTokenizer', 'GemmaTokenizerFast']
def __init__(self, tokenizer):
super().__init__(tokenizer)
# Gemma does not support system prompt
self.from2role = {
"human": "<start_of_turn>user\n",
"gpt": "<start_of_turn>model\n",
}
self.gpt_token_num = None
self.im_end = "<end_of_turn>\n"
self.bos_token = "<bos>"
self.bos_token_ids = None
def format(self, conversations: List[Dict], generation_preface=None):
if self.gpt_token_num is None:
self.gpt_token_num = len(self.tokenizer(self.from2role["gpt"], add_special_tokens=False).input_ids)
if self.bos_token_ids is None:
self.bos_token_ids = self.tokenizer(self.bos_token, add_special_tokens=False).input_ids
if conversations[0]["from"] == "system":
raise ValueError("Gemma does not support system prompt")
if generation_preface is not None:
conversations.append({
"from": "gpt",
"value": generation_preface
})
prompt = "" + self.bos_token
input_ids = [] + self.bos_token_ids
labels = [] + [IGNORE_ID] * len(input_ids)
num_conversation = len(conversations)
for i, conversation in enumerate(conversations):
frm = conversation["from"]
role = self.from2role[frm]
message = conversation["value"].strip()
text = role + message
if i < num_conversation - 1 or generation_preface is None:
text += self.im_end
prompt += text
token_ids = self._tokenize_with_image_symbol(text)
input_ids.extend(token_ids)
label_ids = [self.ignore_id] * len(token_ids)
if frm == "gpt":
# learning `\n` following `im_end` is meaningless, so the last `\n` token is ignored in label
label_ids[self.gpt_token_num:-1] = token_ids[self.gpt_token_num:-1]
labels.extend(label_ids)
assert self._tokenize_with_image_symbol(prompt) == input_ids
assert len(input_ids) == len(labels)
return prompt, input_ids, labels
def format_query(self, query, generation_preface=""):
prompt, input_ids, _ = self.format([{
"from": "human",
"value": query
}], generation_preface=generation_preface)
return prompt, input_ids
|