AIFunOver's picture
Upload vae_decoder/openvino_model.xml with huggingface_hub
75d9a18 verified
raw
history blame
180 kB
<?xml version="1.0"?>
<net name="Model4882" version="11">
<layers>
<layer id="0" name="latent_sample" type="Parameter" version="opset1">
<data shape="?,16,?,?" element_type="f32" />
<output>
<port id="0" precision="FP32" names="latent_sample">
<dim>-1</dim>
<dim>16</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="1" name="self.decoder.conv_in.weight" type="Const" version="opset1">
<data element_type="f32" shape="512, 16, 3, 3" offset="0" size="294912" />
<output>
<port id="0" precision="FP32" names="self.decoder.conv_in.weight">
<dim>512</dim>
<dim>16</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="2" name="__module.decoder.conv_in/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>16</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>16</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="3" name="__module.decoder.conv_in/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="294912" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="4" name="__module.decoder.conv_in/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="44,input.1">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="5" name="self.decoder.mid_block.resnets.0.norm1.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="296960" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.mid_block.resnets.0.norm1.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="6" name="self.decoder.mid_block.resnets.0.norm1.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="299008" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.mid_block.resnets.0.norm1.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="7" name="__module.decoder.mid_block.resnets.0.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="61,input.3">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="8" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="62">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="9" name="self.decoder.mid_block.resnets.0.conv1.weight" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 3, 3" offset="301056" size="9437184" />
<output>
<port id="0" precision="FP32" names="self.decoder.mid_block.resnets.0.conv1.weight">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="10" name="__module.decoder.mid_block.resnets.0.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="11" name="__module.decoder.mid_block.resnets.0.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="9738240" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="12" name="__module.decoder.mid_block.resnets.0.conv1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="69,input.5">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="13" name="self.decoder.mid_block.resnets.0.norm2.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="9740288" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.mid_block.resnets.0.norm2.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="14" name="self.decoder.mid_block.resnets.0.norm2.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="9742336" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.mid_block.resnets.0.norm2.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="15" name="__module.decoder.mid_block.resnets.0.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="72,input.7">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="16" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_1" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="73,input.9">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="17" name="self.decoder.mid_block.resnets.0.conv2.weight" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 3, 3" offset="9744384" size="9437184" />
<output>
<port id="0" precision="FP32" names="self.decoder.mid_block.resnets.0.conv2.weight">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="18" name="__module.decoder.mid_block.resnets.0.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="19" name="__module.decoder.mid_block.resnets.0.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="19181568" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="20" name="__module.decoder.mid_block.resnets.0.conv2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="81,hidden_states.1">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="21" name="__module.decoder.mid_block.resnets.0/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="82,83,hidden_states.3">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="22" name="Constant_4295706" type="Const" version="opset1">
<data element_type="i64" shape="3" offset="19183616" size="24" />
<output>
<port id="0" precision="I64">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="23" name="__module.decoder.mid_block.attentions.0/aten::view/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="I64">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="99">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="24" name="__module.decoder.mid_block.attentions.0/aten::transpose/Constant" type="Const" version="opset1">
<data element_type="i32" shape="3" offset="19183640" size="12" />
<output>
<port id="0" precision="I32">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="25" name="__module.decoder.mid_block.attentions.0/aten::transpose/Transpose" type="Transpose" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
</port>
<port id="1" precision="I32">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="100,hidden_states.5">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="26" name="__module.decoder.mid_block.attentions.0/aten::transpose/Constant_1" type="Const" version="opset1">
<data element_type="i32" shape="3" offset="19183640" size="12" />
<output>
<port id="0" precision="I32">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="27" name="__module.decoder.mid_block.attentions.0/aten::transpose/Transpose_1" type="Transpose" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
<port id="1" precision="I32">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="102,input.11">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="28" name="self.decoder.mid_block.attentions.0.group_norm.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="19183652" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.mid_block.attentions.0.group_norm.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="29" name="self.decoder.mid_block.attentions.0.group_norm.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="19185700" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.mid_block.attentions.0.group_norm.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="30" name="__module.decoder.mid_block.attentions.0.group_norm/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="105">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="31" name="self.decoder.mid_block.attentions.0.to_q.weight" type="Const" version="opset1">
<data element_type="f32" shape="512, 512" offset="19187748" size="1048576" />
<output>
<port id="0" precision="FP32" names="self.decoder.mid_block.attentions.0.to_q.weight">
<dim>512</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="32" name="__module.decoder.mid_block.attentions.0.to_q/aten::linear/MatMul" type="MatMul" version="opset1">
<data transpose_a="true" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="33" name="Constant_4295591" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 512" offset="20236324" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="34" name="__module.decoder.mid_block.attentions.0.to_q/aten::linear/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="109,query">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="35" name="Constant_4295707" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="20238372" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="36" name="__module.decoder.mid_block.attentions.0/aten::view/Reshape_1" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="123">
<dim>-1</dim>
<dim>-1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="37" name="Constant_4295456" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="20238404" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="38" name="__module.decoder.mid_block.attentions.0/aten::transpose/Transpose_3" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="124">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="39" name="self.decoder.mid_block.attentions.0.to_k.weight" type="Const" version="opset1">
<data element_type="f32" shape="512, 512" offset="20238436" size="1048576" />
<output>
<port id="0" precision="FP32" names="self.decoder.mid_block.attentions.0.to_k.weight">
<dim>512</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="40" name="__module.decoder.mid_block.attentions.0.to_k/aten::linear/MatMul" type="MatMul" version="opset1">
<data transpose_a="true" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="41" name="Constant_4295592" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 512" offset="21287012" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="42" name="__module.decoder.mid_block.attentions.0.to_k/aten::linear/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="112,key">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="43" name="Constant_4295708" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="20238372" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="44" name="__module.decoder.mid_block.attentions.0/aten::view/Reshape_2" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="126">
<dim>-1</dim>
<dim>-1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="45" name="Constant_4295460" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="20238404" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="46" name="__module.decoder.mid_block.attentions.0/aten::transpose/Transpose_4" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="127">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="47" name="self.decoder.mid_block.attentions.0.to_v.weight" type="Const" version="opset1">
<data element_type="f32" shape="512, 512" offset="21289060" size="1048576" />
<output>
<port id="0" precision="FP32" names="self.decoder.mid_block.attentions.0.to_v.weight">
<dim>512</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="48" name="__module.decoder.mid_block.attentions.0.to_v/aten::linear/MatMul" type="MatMul" version="opset1">
<data transpose_a="true" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="49" name="Constant_4295593" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 512" offset="22337636" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="50" name="__module.decoder.mid_block.attentions.0.to_v/aten::linear/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="115,value">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="51" name="Constant_4295709" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="20238372" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="52" name="__module.decoder.mid_block.attentions.0/aten::view/Reshape_3" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="129">
<dim>-1</dim>
<dim>-1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="53" name="Constant_4295464" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="20238404" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="54" name="__module.decoder.mid_block.attentions.0/aten::transpose/Transpose_5" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="130">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="55" name="__module.decoder.mid_block.attentions.0/aten::scaled_dot_product_attention/ScaledDotProductAttention" type="ScaledDotProductAttention" version="opset13">
<data causal="false" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="131,hidden_states.7">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="56" name="Constant_4295466" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="22339684" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="57" name="__module.decoder.mid_block.attentions.0/aten::transpose/Transpose_6" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="132">
<dim>-1</dim>
<dim>-1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="58" name="Constant_4295710" type="Const" version="opset1">
<data element_type="i64" shape="3" offset="22339716" size="24" />
<output>
<port id="0" precision="I64">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="59" name="__module.decoder.mid_block.attentions.0/aten::reshape/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
<port id="1" precision="I64">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="136,137,hidden_states.9">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="60" name="self.decoder.mid_block.attentions.0.to_out.0.weight" type="Const" version="opset1">
<data element_type="f32" shape="512, 512" offset="22339740" size="1048576" />
<output>
<port id="0" precision="FP32" names="self.decoder.mid_block.attentions.0.to_out.0.weight">
<dim>512</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="61" name="__module.decoder.mid_block.attentions.0.to_out.0/aten::linear/MatMul" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="62" name="Constant_4295594" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 512" offset="23388316" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="63" name="__module.decoder.mid_block.attentions.0.to_out.0/aten::linear/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="140,input.13">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="64" name="__module.decoder.mid_block.attentions.0/aten::transpose/Constant_7" type="Const" version="opset1">
<data element_type="i32" shape="3" offset="19183640" size="12" />
<output>
<port id="0" precision="I32">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="65" name="__module.decoder.mid_block.attentions.0/aten::transpose/Transpose_7" type="Transpose" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
<port id="1" precision="I32">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="142">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="66" name="__module.decoder.mid_block.attentions.0/aten::size/ShapeOf" type="ShapeOf" version="opset3">
<data output_type="i64" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="67" name="__module.decoder.mid_block.attentions.0/aten::reshape/Reshape_1" type="Reshape" version="opset1">
<data special_zero="false" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="144,hidden_states.13">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="68" name="__module.decoder.mid_block.attentions.0/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="145,146,hidden_states.15,input.15">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="69" name="self.decoder.mid_block.resnets.1.norm1.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="23390364" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.mid_block.resnets.1.norm1.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="70" name="self.decoder.mid_block.resnets.1.norm1.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="23392412" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.mid_block.resnets.1.norm1.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="71" name="__module.decoder.mid_block.resnets.1.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="155,input.17">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="72" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_2" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="156">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="73" name="self.decoder.mid_block.resnets.1.conv1.weight" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 3, 3" offset="23394460" size="9437184" />
<output>
<port id="0" precision="FP32" names="self.decoder.mid_block.resnets.1.conv1.weight">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="74" name="__module.decoder.mid_block.resnets.1.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="75" name="__module.decoder.mid_block.resnets.1.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="32831644" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="76" name="__module.decoder.mid_block.resnets.1.conv1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="163,input.19">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="77" name="self.decoder.mid_block.resnets.1.norm2.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="32833692" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.mid_block.resnets.1.norm2.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="78" name="self.decoder.mid_block.resnets.1.norm2.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="32835740" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.mid_block.resnets.1.norm2.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="79" name="__module.decoder.mid_block.resnets.1.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="166,input.21">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="80" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_3" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="167,input.23">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="81" name="self.decoder.mid_block.resnets.1.conv2.weight" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 3, 3" offset="32837788" size="9437184" />
<output>
<port id="0" precision="FP32" names="self.decoder.mid_block.resnets.1.conv2.weight">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="82" name="__module.decoder.mid_block.resnets.1.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="83" name="__module.decoder.mid_block.resnets.1.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="42274972" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="84" name="__module.decoder.mid_block.resnets.1.conv2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="175,hidden_states.17">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="85" name="__module.decoder.mid_block.resnets.1/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="176,177,178,input.25,sample">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="86" name="self.decoder.up_blocks.0.resnets.0.norm1.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="42277020" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.0.norm1.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="87" name="self.decoder.up_blocks.0.resnets.0.norm1.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="42279068" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.0.norm1.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="88" name="__module.decoder.up_blocks.0.resnets.0.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="194,input.27">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="89" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_4" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="195">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="90" name="self.decoder.up_blocks.0.resnets.0.conv1.weight" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 3, 3" offset="42281116" size="9437184" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.0.conv1.weight">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="91" name="__module.decoder.up_blocks.0.resnets.0.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="92" name="__module.decoder.up_blocks.0.resnets.0.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="51718300" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="93" name="__module.decoder.up_blocks.0.resnets.0.conv1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="202,input.29">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="94" name="self.decoder.up_blocks.0.resnets.0.norm2.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="51720348" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.0.norm2.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="95" name="self.decoder.up_blocks.0.resnets.0.norm2.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="51722396" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.0.norm2.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="96" name="__module.decoder.up_blocks.0.resnets.0.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="205,input.31">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="97" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_5" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="206,input.33">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="98" name="self.decoder.up_blocks.0.resnets.0.conv2.weight" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 3, 3" offset="51724444" size="9437184" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.0.conv2.weight">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="99" name="__module.decoder.up_blocks.0.resnets.0.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="100" name="__module.decoder.up_blocks.0.resnets.0.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="61161628" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="101" name="__module.decoder.up_blocks.0.resnets.0.conv2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="214,hidden_states.19">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="102" name="__module.decoder.up_blocks.0.resnets.0/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="215,216,input.35">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="103" name="self.decoder.up_blocks.0.resnets.1.norm1.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="61163676" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.1.norm1.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="104" name="self.decoder.up_blocks.0.resnets.1.norm1.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="61165724" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.1.norm1.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="105" name="__module.decoder.up_blocks.0.resnets.1.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="224,input.37">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="106" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_6" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="225">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="107" name="self.decoder.up_blocks.0.resnets.1.conv1.weight" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 3, 3" offset="61167772" size="9437184" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.1.conv1.weight">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="108" name="__module.decoder.up_blocks.0.resnets.1.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="109" name="__module.decoder.up_blocks.0.resnets.1.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="70604956" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="110" name="__module.decoder.up_blocks.0.resnets.1.conv1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="232,input.39">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="111" name="self.decoder.up_blocks.0.resnets.1.norm2.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="70607004" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.1.norm2.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="112" name="self.decoder.up_blocks.0.resnets.1.norm2.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="70609052" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.1.norm2.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="113" name="__module.decoder.up_blocks.0.resnets.1.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="235,input.41">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="114" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_7" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="236,input.43">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="115" name="self.decoder.up_blocks.0.resnets.1.conv2.weight" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 3, 3" offset="70611100" size="9437184" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.1.conv2.weight">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="116" name="__module.decoder.up_blocks.0.resnets.1.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="117" name="__module.decoder.up_blocks.0.resnets.1.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="80048284" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="118" name="__module.decoder.up_blocks.0.resnets.1.conv2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="244,hidden_states.21">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="119" name="__module.decoder.up_blocks.0.resnets.1/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="245,246,input.45">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="120" name="self.decoder.up_blocks.0.resnets.2.norm1.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="80050332" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.2.norm1.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="121" name="self.decoder.up_blocks.0.resnets.2.norm1.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="80052380" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.2.norm1.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="122" name="__module.decoder.up_blocks.0.resnets.2.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="254,input.47">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="123" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_8" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="255">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="124" name="self.decoder.up_blocks.0.resnets.2.conv1.weight" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 3, 3" offset="80054428" size="9437184" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.2.conv1.weight">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="125" name="__module.decoder.up_blocks.0.resnets.2.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="126" name="__module.decoder.up_blocks.0.resnets.2.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="89491612" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="127" name="__module.decoder.up_blocks.0.resnets.2.conv1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="262,input.49">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="128" name="self.decoder.up_blocks.0.resnets.2.norm2.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="89493660" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.2.norm2.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="129" name="self.decoder.up_blocks.0.resnets.2.norm2.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="89495708" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.2.norm2.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="130" name="__module.decoder.up_blocks.0.resnets.2.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="265,input.51">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="131" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_9" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="266,input.53">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="132" name="self.decoder.up_blocks.0.resnets.2.conv2.weight" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 3, 3" offset="89497756" size="9437184" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.2.conv2.weight">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="133" name="__module.decoder.up_blocks.0.resnets.2.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="134" name="__module.decoder.up_blocks.0.resnets.2.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="98934940" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="135" name="__module.decoder.up_blocks.0.resnets.2.conv2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="274,hidden_states.23">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="136" name="__module.decoder.up_blocks.0.resnets.2/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="275,276,hidden_states.25">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="137" name="__module.decoder.up_blocks.0.upsamplers.0/aten::upsample_nearest2d/Multiply" type="Const" version="opset1">
<data element_type="f32" shape="2" offset="98936988" size="8" />
<output>
<port id="0" precision="FP32">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="138" name="Constant_4290008" type="Const" version="opset1">
<data element_type="i32" shape="2" offset="98936996" size="8" />
<output>
<port id="0" precision="I32">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="139" name="__module.decoder.up_blocks.0.upsamplers.0/aten::upsample_nearest2d/Interpolate" type="Interpolate" version="opset11">
<data mode="nearest" shape_calculation_mode="scales" coordinate_transformation_mode="asymmetric" nearest_mode="floor" antialias="false" pads_begin="0, 0, 0, 0" pads_end="0, 0, 0, 0" cube_coeff="-0.75" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>2</dim>
</port>
<port id="2" precision="I32">
<dim>2</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="279">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="140" name="self.decoder.up_blocks.0.upsamplers.0.conv.weight" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 3, 3" offset="98937004" size="9437184" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.0.upsamplers.0.conv.weight">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="141" name="__module.decoder.up_blocks.0.upsamplers.0.conv/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="142" name="__module.decoder.up_blocks.0.upsamplers.0.conv/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="108374188" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="143" name="__module.decoder.up_blocks.0.upsamplers.0.conv/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="286,input.55">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="144" name="self.decoder.up_blocks.1.resnets.0.norm1.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="108376236" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.0.norm1.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="145" name="self.decoder.up_blocks.1.resnets.0.norm1.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="108378284" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.0.norm1.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="146" name="__module.decoder.up_blocks.1.resnets.0.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="302,input.57">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="147" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_10" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="303">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="148" name="self.decoder.up_blocks.1.resnets.0.conv1.weight" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 3, 3" offset="108380332" size="9437184" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.0.conv1.weight">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="149" name="__module.decoder.up_blocks.1.resnets.0.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="150" name="__module.decoder.up_blocks.1.resnets.0.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="117817516" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="151" name="__module.decoder.up_blocks.1.resnets.0.conv1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="310,input.59">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="152" name="self.decoder.up_blocks.1.resnets.0.norm2.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="117819564" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.0.norm2.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="153" name="self.decoder.up_blocks.1.resnets.0.norm2.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="117821612" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.0.norm2.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="154" name="__module.decoder.up_blocks.1.resnets.0.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="313,input.61">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="155" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_11" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="314,input.63">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="156" name="self.decoder.up_blocks.1.resnets.0.conv2.weight" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 3, 3" offset="117823660" size="9437184" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.0.conv2.weight">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="157" name="__module.decoder.up_blocks.1.resnets.0.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="158" name="__module.decoder.up_blocks.1.resnets.0.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="127260844" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="159" name="__module.decoder.up_blocks.1.resnets.0.conv2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="322,hidden_states.27">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="160" name="__module.decoder.up_blocks.1.resnets.0/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="323,324,input.65">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="161" name="self.decoder.up_blocks.1.resnets.1.norm1.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="127262892" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.1.norm1.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="162" name="self.decoder.up_blocks.1.resnets.1.norm1.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="127264940" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.1.norm1.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="163" name="__module.decoder.up_blocks.1.resnets.1.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="332,input.67">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="164" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_12" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="333">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="165" name="self.decoder.up_blocks.1.resnets.1.conv1.weight" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 3, 3" offset="127266988" size="9437184" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.1.conv1.weight">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="166" name="__module.decoder.up_blocks.1.resnets.1.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="167" name="__module.decoder.up_blocks.1.resnets.1.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="136704172" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="168" name="__module.decoder.up_blocks.1.resnets.1.conv1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="340,input.69">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="169" name="self.decoder.up_blocks.1.resnets.1.norm2.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="136706220" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.1.norm2.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="170" name="self.decoder.up_blocks.1.resnets.1.norm2.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="136708268" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.1.norm2.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="171" name="__module.decoder.up_blocks.1.resnets.1.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="343,input.71">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="172" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_13" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="344,input.73">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="173" name="self.decoder.up_blocks.1.resnets.1.conv2.weight" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 3, 3" offset="136710316" size="9437184" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.1.conv2.weight">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="174" name="__module.decoder.up_blocks.1.resnets.1.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="175" name="__module.decoder.up_blocks.1.resnets.1.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="146147500" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="176" name="__module.decoder.up_blocks.1.resnets.1.conv2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="352,hidden_states.29">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="177" name="__module.decoder.up_blocks.1.resnets.1/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="353,354,input.75">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="178" name="self.decoder.up_blocks.1.resnets.2.norm1.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="146149548" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.2.norm1.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="179" name="self.decoder.up_blocks.1.resnets.2.norm1.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="146151596" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.2.norm1.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="180" name="__module.decoder.up_blocks.1.resnets.2.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="362,input.77">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="181" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_14" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="363">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="182" name="self.decoder.up_blocks.1.resnets.2.conv1.weight" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 3, 3" offset="146153644" size="9437184" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.2.conv1.weight">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="183" name="__module.decoder.up_blocks.1.resnets.2.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="184" name="__module.decoder.up_blocks.1.resnets.2.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="155590828" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="185" name="__module.decoder.up_blocks.1.resnets.2.conv1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="370,input.79">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="186" name="self.decoder.up_blocks.1.resnets.2.norm2.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="155592876" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.2.norm2.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="187" name="self.decoder.up_blocks.1.resnets.2.norm2.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="155594924" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.2.norm2.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="188" name="__module.decoder.up_blocks.1.resnets.2.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="373,input.81">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="189" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_15" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="374,input.83">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="190" name="self.decoder.up_blocks.1.resnets.2.conv2.weight" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 3, 3" offset="155596972" size="9437184" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.2.conv2.weight">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="191" name="__module.decoder.up_blocks.1.resnets.2.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="192" name="__module.decoder.up_blocks.1.resnets.2.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="165034156" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="193" name="__module.decoder.up_blocks.1.resnets.2.conv2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="382,hidden_states.31">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="194" name="__module.decoder.up_blocks.1.resnets.2/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="383,384,hidden_states.33">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="195" name="__module.decoder.up_blocks.1.upsamplers.0/aten::upsample_nearest2d/Multiply" type="Const" version="opset1">
<data element_type="f32" shape="2" offset="98936988" size="8" />
<output>
<port id="0" precision="FP32">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="196" name="Constant_4290445" type="Const" version="opset1">
<data element_type="i32" shape="2" offset="98936996" size="8" />
<output>
<port id="0" precision="I32">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="197" name="__module.decoder.up_blocks.1.upsamplers.0/aten::upsample_nearest2d/Interpolate" type="Interpolate" version="opset11">
<data mode="nearest" shape_calculation_mode="scales" coordinate_transformation_mode="asymmetric" nearest_mode="floor" antialias="false" pads_begin="0, 0, 0, 0" pads_end="0, 0, 0, 0" cube_coeff="-0.75" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>2</dim>
</port>
<port id="2" precision="I32">
<dim>2</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="387">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="198" name="self.decoder.up_blocks.1.upsamplers.0.conv.weight" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 3, 3" offset="165036204" size="9437184" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.1.upsamplers.0.conv.weight">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="199" name="__module.decoder.up_blocks.1.upsamplers.0.conv/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="200" name="__module.decoder.up_blocks.1.upsamplers.0.conv/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="174473388" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="201" name="__module.decoder.up_blocks.1.upsamplers.0.conv/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="394,input.85">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="202" name="self.decoder.up_blocks.2.resnets.0.conv_shortcut.weight" type="Const" version="opset1">
<data element_type="f32" shape="256, 512, 1, 1" offset="174475436" size="524288" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.0.conv_shortcut.weight">
<dim>256</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="203" name="__module.decoder.up_blocks.2.resnets.0.conv_shortcut/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="204" name="__module.decoder.up_blocks.2.resnets.0.conv_shortcut/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="174999724" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="205" name="__module.decoder.up_blocks.2.resnets.0.conv_shortcut/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="438,input_tensor.1">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="206" name="self.decoder.up_blocks.2.resnets.0.norm1.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="175000748" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.0.norm1.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="207" name="self.decoder.up_blocks.2.resnets.0.norm1.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="175002796" size="2048" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.0.norm1.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="208" name="__module.decoder.up_blocks.2.resnets.0.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="411,input.87">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="209" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_16" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="412">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="210" name="self.decoder.up_blocks.2.resnets.0.conv1.weight" type="Const" version="opset1">
<data element_type="f32" shape="256, 512, 3, 3" offset="175004844" size="4718592" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.0.conv1.weight">
<dim>256</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="211" name="__module.decoder.up_blocks.2.resnets.0.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="212" name="__module.decoder.up_blocks.2.resnets.0.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="179723436" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="213" name="__module.decoder.up_blocks.2.resnets.0.conv1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="419,input.89">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="214" name="self.decoder.up_blocks.2.resnets.0.norm2.weight" type="Const" version="opset1">
<data element_type="f32" shape="256" offset="179724460" size="1024" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.0.norm2.weight">
<dim>256</dim>
</port>
</output>
</layer>
<layer id="215" name="self.decoder.up_blocks.2.resnets.0.norm2.bias" type="Const" version="opset1">
<data element_type="f32" shape="256" offset="179725484" size="1024" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.0.norm2.bias">
<dim>256</dim>
</port>
</output>
</layer>
<layer id="216" name="__module.decoder.up_blocks.2.resnets.0.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
</port>
<port id="2" precision="FP32">
<dim>256</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="422,input.91">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="217" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_17" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="423,input.93">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="218" name="self.decoder.up_blocks.2.resnets.0.conv2.weight" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 3, 3" offset="179726508" size="2359296" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.0.conv2.weight">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="219" name="__module.decoder.up_blocks.2.resnets.0.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="220" name="__module.decoder.up_blocks.2.resnets.0.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="182085804" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="221" name="__module.decoder.up_blocks.2.resnets.0.conv2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="431,hidden_states.35">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="222" name="__module.decoder.up_blocks.2.resnets.0/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="439,440,input.95">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="223" name="self.decoder.up_blocks.2.resnets.1.norm1.weight" type="Const" version="opset1">
<data element_type="f32" shape="256" offset="182086828" size="1024" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.1.norm1.weight">
<dim>256</dim>
</port>
</output>
</layer>
<layer id="224" name="self.decoder.up_blocks.2.resnets.1.norm1.bias" type="Const" version="opset1">
<data element_type="f32" shape="256" offset="182087852" size="1024" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.1.norm1.bias">
<dim>256</dim>
</port>
</output>
</layer>
<layer id="225" name="__module.decoder.up_blocks.2.resnets.1.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
</port>
<port id="2" precision="FP32">
<dim>256</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="448,input.97">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="226" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_18" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="449">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="227" name="self.decoder.up_blocks.2.resnets.1.conv1.weight" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 3, 3" offset="182088876" size="2359296" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.1.conv1.weight">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="228" name="__module.decoder.up_blocks.2.resnets.1.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="229" name="__module.decoder.up_blocks.2.resnets.1.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="184448172" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="230" name="__module.decoder.up_blocks.2.resnets.1.conv1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="456,input.99">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="231" name="self.decoder.up_blocks.2.resnets.1.norm2.weight" type="Const" version="opset1">
<data element_type="f32" shape="256" offset="184449196" size="1024" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.1.norm2.weight">
<dim>256</dim>
</port>
</output>
</layer>
<layer id="232" name="self.decoder.up_blocks.2.resnets.1.norm2.bias" type="Const" version="opset1">
<data element_type="f32" shape="256" offset="184450220" size="1024" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.1.norm2.bias">
<dim>256</dim>
</port>
</output>
</layer>
<layer id="233" name="__module.decoder.up_blocks.2.resnets.1.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
</port>
<port id="2" precision="FP32">
<dim>256</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="459,input.101">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="234" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_19" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="460,input.103">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="235" name="self.decoder.up_blocks.2.resnets.1.conv2.weight" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 3, 3" offset="184451244" size="2359296" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.1.conv2.weight">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="236" name="__module.decoder.up_blocks.2.resnets.1.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="237" name="__module.decoder.up_blocks.2.resnets.1.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="186810540" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="238" name="__module.decoder.up_blocks.2.resnets.1.conv2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="468,hidden_states.37">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="239" name="__module.decoder.up_blocks.2.resnets.1/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="469,470,input.105">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="240" name="self.decoder.up_blocks.2.resnets.2.norm1.weight" type="Const" version="opset1">
<data element_type="f32" shape="256" offset="186811564" size="1024" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.2.norm1.weight">
<dim>256</dim>
</port>
</output>
</layer>
<layer id="241" name="self.decoder.up_blocks.2.resnets.2.norm1.bias" type="Const" version="opset1">
<data element_type="f32" shape="256" offset="186812588" size="1024" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.2.norm1.bias">
<dim>256</dim>
</port>
</output>
</layer>
<layer id="242" name="__module.decoder.up_blocks.2.resnets.2.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
</port>
<port id="2" precision="FP32">
<dim>256</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="478,input.107">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="243" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_20" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="479">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="244" name="self.decoder.up_blocks.2.resnets.2.conv1.weight" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 3, 3" offset="186813612" size="2359296" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.2.conv1.weight">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="245" name="__module.decoder.up_blocks.2.resnets.2.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="246" name="__module.decoder.up_blocks.2.resnets.2.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="189172908" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="247" name="__module.decoder.up_blocks.2.resnets.2.conv1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="486,input.109">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="248" name="self.decoder.up_blocks.2.resnets.2.norm2.weight" type="Const" version="opset1">
<data element_type="f32" shape="256" offset="189173932" size="1024" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.2.norm2.weight">
<dim>256</dim>
</port>
</output>
</layer>
<layer id="249" name="self.decoder.up_blocks.2.resnets.2.norm2.bias" type="Const" version="opset1">
<data element_type="f32" shape="256" offset="189174956" size="1024" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.2.norm2.bias">
<dim>256</dim>
</port>
</output>
</layer>
<layer id="250" name="__module.decoder.up_blocks.2.resnets.2.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
</port>
<port id="2" precision="FP32">
<dim>256</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="489,input.111">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="251" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_21" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="490,input.113">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="252" name="self.decoder.up_blocks.2.resnets.2.conv2.weight" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 3, 3" offset="189175980" size="2359296" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.2.conv2.weight">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="253" name="__module.decoder.up_blocks.2.resnets.2.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="254" name="__module.decoder.up_blocks.2.resnets.2.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="191535276" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="255" name="__module.decoder.up_blocks.2.resnets.2.conv2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="498,hidden_states.39">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="256" name="__module.decoder.up_blocks.2.resnets.2/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="499,500,hidden_states.41">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="257" name="__module.decoder.up_blocks.2.upsamplers.0/aten::upsample_nearest2d/Multiply" type="Const" version="opset1">
<data element_type="f32" shape="2" offset="98936988" size="8" />
<output>
<port id="0" precision="FP32">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="258" name="Constant_4290926" type="Const" version="opset1">
<data element_type="i32" shape="2" offset="98936996" size="8" />
<output>
<port id="0" precision="I32">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="259" name="__module.decoder.up_blocks.2.upsamplers.0/aten::upsample_nearest2d/Interpolate" type="Interpolate" version="opset11">
<data mode="nearest" shape_calculation_mode="scales" coordinate_transformation_mode="asymmetric" nearest_mode="floor" antialias="false" pads_begin="0, 0, 0, 0" pads_end="0, 0, 0, 0" cube_coeff="-0.75" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>2</dim>
</port>
<port id="2" precision="I32">
<dim>2</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="503">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="260" name="self.decoder.up_blocks.2.upsamplers.0.conv.weight" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 3, 3" offset="191536300" size="2359296" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.2.upsamplers.0.conv.weight">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="261" name="__module.decoder.up_blocks.2.upsamplers.0.conv/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="262" name="__module.decoder.up_blocks.2.upsamplers.0.conv/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="193895596" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="263" name="__module.decoder.up_blocks.2.upsamplers.0.conv/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="510,input.115">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="264" name="self.decoder.up_blocks.3.resnets.0.conv_shortcut.weight" type="Const" version="opset1">
<data element_type="f32" shape="128, 256, 1, 1" offset="193896620" size="131072" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.0.conv_shortcut.weight">
<dim>128</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="265" name="__module.decoder.up_blocks.3.resnets.0.conv_shortcut/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="266" name="__module.decoder.up_blocks.3.resnets.0.conv_shortcut/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="194027692" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="267" name="__module.decoder.up_blocks.3.resnets.0.conv_shortcut/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="552,input_tensor">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="268" name="self.decoder.up_blocks.3.resnets.0.norm1.weight" type="Const" version="opset1">
<data element_type="f32" shape="256" offset="194028204" size="1024" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.0.norm1.weight">
<dim>256</dim>
</port>
</output>
</layer>
<layer id="269" name="self.decoder.up_blocks.3.resnets.0.norm1.bias" type="Const" version="opset1">
<data element_type="f32" shape="256" offset="194029228" size="1024" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.0.norm1.bias">
<dim>256</dim>
</port>
</output>
</layer>
<layer id="270" name="__module.decoder.up_blocks.3.resnets.0.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
</port>
<port id="2" precision="FP32">
<dim>256</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="525,input.117">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="271" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_22" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="526">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="272" name="self.decoder.up_blocks.3.resnets.0.conv1.weight" type="Const" version="opset1">
<data element_type="f32" shape="128, 256, 3, 3" offset="194030252" size="1179648" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.0.conv1.weight">
<dim>128</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="273" name="__module.decoder.up_blocks.3.resnets.0.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="274" name="__module.decoder.up_blocks.3.resnets.0.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="195209900" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="275" name="__module.decoder.up_blocks.3.resnets.0.conv1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="533,input.119">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="276" name="self.decoder.up_blocks.3.resnets.0.norm2.weight" type="Const" version="opset1">
<data element_type="f32" shape="128" offset="195210412" size="512" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.0.norm2.weight">
<dim>128</dim>
</port>
</output>
</layer>
<layer id="277" name="self.decoder.up_blocks.3.resnets.0.norm2.bias" type="Const" version="opset1">
<data element_type="f32" shape="128" offset="195210924" size="512" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.0.norm2.bias">
<dim>128</dim>
</port>
</output>
</layer>
<layer id="278" name="__module.decoder.up_blocks.3.resnets.0.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
</port>
<port id="2" precision="FP32">
<dim>128</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="536,input.121">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="279" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_23" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="537,input.123">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="280" name="self.decoder.up_blocks.3.resnets.0.conv2.weight" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 3, 3" offset="195211436" size="589824" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.0.conv2.weight">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="281" name="__module.decoder.up_blocks.3.resnets.0.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="282" name="__module.decoder.up_blocks.3.resnets.0.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="195801260" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="283" name="__module.decoder.up_blocks.3.resnets.0.conv2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="545,hidden_states.43">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="284" name="__module.decoder.up_blocks.3.resnets.0/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="553,554,input.125">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="285" name="self.decoder.up_blocks.3.resnets.1.norm1.weight" type="Const" version="opset1">
<data element_type="f32" shape="128" offset="195801772" size="512" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.1.norm1.weight">
<dim>128</dim>
</port>
</output>
</layer>
<layer id="286" name="self.decoder.up_blocks.3.resnets.1.norm1.bias" type="Const" version="opset1">
<data element_type="f32" shape="128" offset="195802284" size="512" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.1.norm1.bias">
<dim>128</dim>
</port>
</output>
</layer>
<layer id="287" name="__module.decoder.up_blocks.3.resnets.1.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
</port>
<port id="2" precision="FP32">
<dim>128</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="562,input.127">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="288" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_24" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="563">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="289" name="self.decoder.up_blocks.3.resnets.1.conv1.weight" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 3, 3" offset="195802796" size="589824" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.1.conv1.weight">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="290" name="__module.decoder.up_blocks.3.resnets.1.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="291" name="__module.decoder.up_blocks.3.resnets.1.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="196392620" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="292" name="__module.decoder.up_blocks.3.resnets.1.conv1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="570,input.129">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="293" name="self.decoder.up_blocks.3.resnets.1.norm2.weight" type="Const" version="opset1">
<data element_type="f32" shape="128" offset="196393132" size="512" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.1.norm2.weight">
<dim>128</dim>
</port>
</output>
</layer>
<layer id="294" name="self.decoder.up_blocks.3.resnets.1.norm2.bias" type="Const" version="opset1">
<data element_type="f32" shape="128" offset="196393644" size="512" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.1.norm2.bias">
<dim>128</dim>
</port>
</output>
</layer>
<layer id="295" name="__module.decoder.up_blocks.3.resnets.1.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
</port>
<port id="2" precision="FP32">
<dim>128</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="573,input.131">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="296" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_25" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="574,input.133">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="297" name="self.decoder.up_blocks.3.resnets.1.conv2.weight" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 3, 3" offset="196394156" size="589824" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.1.conv2.weight">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="298" name="__module.decoder.up_blocks.3.resnets.1.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="299" name="__module.decoder.up_blocks.3.resnets.1.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="196983980" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="300" name="__module.decoder.up_blocks.3.resnets.1.conv2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="582,hidden_states.45">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="301" name="__module.decoder.up_blocks.3.resnets.1/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="583,584,input.135">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="302" name="self.decoder.up_blocks.3.resnets.2.norm1.weight" type="Const" version="opset1">
<data element_type="f32" shape="128" offset="196984492" size="512" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.2.norm1.weight">
<dim>128</dim>
</port>
</output>
</layer>
<layer id="303" name="self.decoder.up_blocks.3.resnets.2.norm1.bias" type="Const" version="opset1">
<data element_type="f32" shape="128" offset="196985004" size="512" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.2.norm1.bias">
<dim>128</dim>
</port>
</output>
</layer>
<layer id="304" name="__module.decoder.up_blocks.3.resnets.2.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
</port>
<port id="2" precision="FP32">
<dim>128</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="592,input.137">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="305" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_26" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="593">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="306" name="self.decoder.up_blocks.3.resnets.2.conv1.weight" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 3, 3" offset="196985516" size="589824" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.2.conv1.weight">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="307" name="__module.decoder.up_blocks.3.resnets.2.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="308" name="__module.decoder.up_blocks.3.resnets.2.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="197575340" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="309" name="__module.decoder.up_blocks.3.resnets.2.conv1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="600,input.139">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="310" name="self.decoder.up_blocks.3.resnets.2.norm2.weight" type="Const" version="opset1">
<data element_type="f32" shape="128" offset="197575852" size="512" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.2.norm2.weight">
<dim>128</dim>
</port>
</output>
</layer>
<layer id="311" name="self.decoder.up_blocks.3.resnets.2.norm2.bias" type="Const" version="opset1">
<data element_type="f32" shape="128" offset="197576364" size="512" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.2.norm2.bias">
<dim>128</dim>
</port>
</output>
</layer>
<layer id="312" name="__module.decoder.up_blocks.3.resnets.2.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
</port>
<port id="2" precision="FP32">
<dim>128</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="603,input.141">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="313" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_27" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="604,input.143">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="314" name="self.decoder.up_blocks.3.resnets.2.conv2.weight" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 3, 3" offset="197576876" size="589824" />
<output>
<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.2.conv2.weight">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="315" name="__module.decoder.up_blocks.3.resnets.2.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="316" name="__module.decoder.up_blocks.3.resnets.2.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="198166700" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="317" name="__module.decoder.up_blocks.3.resnets.2.conv2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="612,hidden_states">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="318" name="__module.decoder.up_blocks.3.resnets.2/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="613,614,input.145">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="319" name="self.decoder.conv_norm_out.weight" type="Const" version="opset1">
<data element_type="f32" shape="128" offset="198167212" size="512" />
<output>
<port id="0" precision="FP32" names="self.decoder.conv_norm_out.weight">
<dim>128</dim>
</port>
</output>
</layer>
<layer id="320" name="self.decoder.conv_norm_out.bias" type="Const" version="opset1">
<data element_type="f32" shape="128" offset="198167724" size="512" />
<output>
<port id="0" precision="FP32" names="self.decoder.conv_norm_out.bias">
<dim>128</dim>
</port>
</output>
</layer>
<layer id="321" name="__module.decoder.conv_norm_out/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
</port>
<port id="2" precision="FP32">
<dim>128</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="617,input">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="322" name="__module.decoder.conv_act/aten::silu/Swish" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="618">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="323" name="self.decoder.conv_out.weight" type="Const" version="opset1">
<data element_type="f32" shape="3, 128, 3, 3" offset="198168236" size="13824" />
<output>
<port id="0" precision="FP32" names="self.decoder.conv_out.weight">
<dim>3</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="324" name="__module.decoder.conv_out/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>3</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>3</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="325" name="__module.decoder.conv_out/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 3, 1, 1" offset="198182060" size="12" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="326" name="__module.decoder.conv_out/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>3</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="sample">
<dim>-1</dim>
<dim>3</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="327" name="Result_4291498" type="Result" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>3</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
</layer>
</layers>
<edges>
<edge from-layer="0" from-port="0" to-layer="2" to-port="0" />
<edge from-layer="1" from-port="0" to-layer="2" to-port="1" />
<edge from-layer="2" from-port="2" to-layer="4" to-port="0" />
<edge from-layer="3" from-port="0" to-layer="4" to-port="1" />
<edge from-layer="4" from-port="2" to-layer="7" to-port="0" />
<edge from-layer="4" from-port="2" to-layer="21" to-port="0" />
<edge from-layer="5" from-port="0" to-layer="7" to-port="1" />
<edge from-layer="6" from-port="0" to-layer="7" to-port="2" />
<edge from-layer="7" from-port="3" to-layer="8" to-port="0" />
<edge from-layer="8" from-port="1" to-layer="10" to-port="0" />
<edge from-layer="9" from-port="0" to-layer="10" to-port="1" />
<edge from-layer="10" from-port="2" to-layer="12" to-port="0" />
<edge from-layer="11" from-port="0" to-layer="12" to-port="1" />
<edge from-layer="12" from-port="2" to-layer="15" to-port="0" />
<edge from-layer="13" from-port="0" to-layer="15" to-port="1" />
<edge from-layer="14" from-port="0" to-layer="15" to-port="2" />
<edge from-layer="15" from-port="3" to-layer="16" to-port="0" />
<edge from-layer="16" from-port="1" to-layer="18" to-port="0" />
<edge from-layer="17" from-port="0" to-layer="18" to-port="1" />
<edge from-layer="18" from-port="2" to-layer="20" to-port="0" />
<edge from-layer="19" from-port="0" to-layer="20" to-port="1" />
<edge from-layer="20" from-port="2" to-layer="21" to-port="1" />
<edge from-layer="21" from-port="2" to-layer="23" to-port="0" />
<edge from-layer="21" from-port="2" to-layer="66" to-port="0" />
<edge from-layer="21" from-port="2" to-layer="68" to-port="1" />
<edge from-layer="22" from-port="0" to-layer="23" to-port="1" />
<edge from-layer="23" from-port="2" to-layer="25" to-port="0" />
<edge from-layer="24" from-port="0" to-layer="25" to-port="1" />
<edge from-layer="25" from-port="2" to-layer="27" to-port="0" />
<edge from-layer="26" from-port="0" to-layer="27" to-port="1" />
<edge from-layer="27" from-port="2" to-layer="30" to-port="0" />
<edge from-layer="28" from-port="0" to-layer="30" to-port="1" />
<edge from-layer="29" from-port="0" to-layer="30" to-port="2" />
<edge from-layer="30" from-port="3" to-layer="32" to-port="0" />
<edge from-layer="30" from-port="3" to-layer="40" to-port="0" />
<edge from-layer="30" from-port="3" to-layer="48" to-port="0" />
<edge from-layer="31" from-port="0" to-layer="32" to-port="1" />
<edge from-layer="32" from-port="2" to-layer="34" to-port="0" />
<edge from-layer="33" from-port="0" to-layer="34" to-port="1" />
<edge from-layer="34" from-port="2" to-layer="36" to-port="0" />
<edge from-layer="35" from-port="0" to-layer="36" to-port="1" />
<edge from-layer="36" from-port="2" to-layer="38" to-port="0" />
<edge from-layer="37" from-port="0" to-layer="38" to-port="1" />
<edge from-layer="38" from-port="2" to-layer="55" to-port="0" />
<edge from-layer="39" from-port="0" to-layer="40" to-port="1" />
<edge from-layer="40" from-port="2" to-layer="42" to-port="0" />
<edge from-layer="41" from-port="0" to-layer="42" to-port="1" />
<edge from-layer="42" from-port="2" to-layer="44" to-port="0" />
<edge from-layer="43" from-port="0" to-layer="44" to-port="1" />
<edge from-layer="44" from-port="2" to-layer="46" to-port="0" />
<edge from-layer="45" from-port="0" to-layer="46" to-port="1" />
<edge from-layer="46" from-port="2" to-layer="55" to-port="1" />
<edge from-layer="47" from-port="0" to-layer="48" to-port="1" />
<edge from-layer="48" from-port="2" to-layer="50" to-port="0" />
<edge from-layer="49" from-port="0" to-layer="50" to-port="1" />
<edge from-layer="50" from-port="2" to-layer="52" to-port="0" />
<edge from-layer="51" from-port="0" to-layer="52" to-port="1" />
<edge from-layer="52" from-port="2" to-layer="54" to-port="0" />
<edge from-layer="53" from-port="0" to-layer="54" to-port="1" />
<edge from-layer="54" from-port="2" to-layer="55" to-port="2" />
<edge from-layer="55" from-port="3" to-layer="57" to-port="0" />
<edge from-layer="56" from-port="0" to-layer="57" to-port="1" />
<edge from-layer="57" from-port="2" to-layer="59" to-port="0" />
<edge from-layer="58" from-port="0" to-layer="59" to-port="1" />
<edge from-layer="59" from-port="2" to-layer="61" to-port="0" />
<edge from-layer="60" from-port="0" to-layer="61" to-port="1" />
<edge from-layer="61" from-port="2" to-layer="63" to-port="0" />
<edge from-layer="62" from-port="0" to-layer="63" to-port="1" />
<edge from-layer="63" from-port="2" to-layer="65" to-port="0" />
<edge from-layer="64" from-port="0" to-layer="65" to-port="1" />
<edge from-layer="65" from-port="2" to-layer="67" to-port="0" />
<edge from-layer="66" from-port="1" to-layer="67" to-port="1" />
<edge from-layer="67" from-port="2" to-layer="68" to-port="0" />
<edge from-layer="68" from-port="2" to-layer="85" to-port="0" />
<edge from-layer="68" from-port="2" to-layer="71" to-port="0" />
<edge from-layer="69" from-port="0" to-layer="71" to-port="1" />
<edge from-layer="70" from-port="0" to-layer="71" to-port="2" />
<edge from-layer="71" from-port="3" to-layer="72" to-port="0" />
<edge from-layer="72" from-port="1" to-layer="74" to-port="0" />
<edge from-layer="73" from-port="0" to-layer="74" to-port="1" />
<edge from-layer="74" from-port="2" to-layer="76" to-port="0" />
<edge from-layer="75" from-port="0" to-layer="76" to-port="1" />
<edge from-layer="76" from-port="2" to-layer="79" to-port="0" />
<edge from-layer="77" from-port="0" to-layer="79" to-port="1" />
<edge from-layer="78" from-port="0" to-layer="79" to-port="2" />
<edge from-layer="79" from-port="3" to-layer="80" to-port="0" />
<edge from-layer="80" from-port="1" to-layer="82" to-port="0" />
<edge from-layer="81" from-port="0" to-layer="82" to-port="1" />
<edge from-layer="82" from-port="2" to-layer="84" to-port="0" />
<edge from-layer="83" from-port="0" to-layer="84" to-port="1" />
<edge from-layer="84" from-port="2" to-layer="85" to-port="1" />
<edge from-layer="85" from-port="2" to-layer="88" to-port="0" />
<edge from-layer="85" from-port="2" to-layer="102" to-port="0" />
<edge from-layer="86" from-port="0" to-layer="88" to-port="1" />
<edge from-layer="87" from-port="0" to-layer="88" to-port="2" />
<edge from-layer="88" from-port="3" to-layer="89" to-port="0" />
<edge from-layer="89" from-port="1" to-layer="91" to-port="0" />
<edge from-layer="90" from-port="0" to-layer="91" to-port="1" />
<edge from-layer="91" from-port="2" to-layer="93" to-port="0" />
<edge from-layer="92" from-port="0" to-layer="93" to-port="1" />
<edge from-layer="93" from-port="2" to-layer="96" to-port="0" />
<edge from-layer="94" from-port="0" to-layer="96" to-port="1" />
<edge from-layer="95" from-port="0" to-layer="96" to-port="2" />
<edge from-layer="96" from-port="3" to-layer="97" to-port="0" />
<edge from-layer="97" from-port="1" to-layer="99" to-port="0" />
<edge from-layer="98" from-port="0" to-layer="99" to-port="1" />
<edge from-layer="99" from-port="2" to-layer="101" to-port="0" />
<edge from-layer="100" from-port="0" to-layer="101" to-port="1" />
<edge from-layer="101" from-port="2" to-layer="102" to-port="1" />
<edge from-layer="102" from-port="2" to-layer="105" to-port="0" />
<edge from-layer="102" from-port="2" to-layer="119" to-port="0" />
<edge from-layer="103" from-port="0" to-layer="105" to-port="1" />
<edge from-layer="104" from-port="0" to-layer="105" to-port="2" />
<edge from-layer="105" from-port="3" to-layer="106" to-port="0" />
<edge from-layer="106" from-port="1" to-layer="108" to-port="0" />
<edge from-layer="107" from-port="0" to-layer="108" to-port="1" />
<edge from-layer="108" from-port="2" to-layer="110" to-port="0" />
<edge from-layer="109" from-port="0" to-layer="110" to-port="1" />
<edge from-layer="110" from-port="2" to-layer="113" to-port="0" />
<edge from-layer="111" from-port="0" to-layer="113" to-port="1" />
<edge from-layer="112" from-port="0" to-layer="113" to-port="2" />
<edge from-layer="113" from-port="3" to-layer="114" to-port="0" />
<edge from-layer="114" from-port="1" to-layer="116" to-port="0" />
<edge from-layer="115" from-port="0" to-layer="116" to-port="1" />
<edge from-layer="116" from-port="2" to-layer="118" to-port="0" />
<edge from-layer="117" from-port="0" to-layer="118" to-port="1" />
<edge from-layer="118" from-port="2" to-layer="119" to-port="1" />
<edge from-layer="119" from-port="2" to-layer="122" to-port="0" />
<edge from-layer="119" from-port="2" to-layer="136" to-port="0" />
<edge from-layer="120" from-port="0" to-layer="122" to-port="1" />
<edge from-layer="121" from-port="0" to-layer="122" to-port="2" />
<edge from-layer="122" from-port="3" to-layer="123" to-port="0" />
<edge from-layer="123" from-port="1" to-layer="125" to-port="0" />
<edge from-layer="124" from-port="0" to-layer="125" to-port="1" />
<edge from-layer="125" from-port="2" to-layer="127" to-port="0" />
<edge from-layer="126" from-port="0" to-layer="127" to-port="1" />
<edge from-layer="127" from-port="2" to-layer="130" to-port="0" />
<edge from-layer="128" from-port="0" to-layer="130" to-port="1" />
<edge from-layer="129" from-port="0" to-layer="130" to-port="2" />
<edge from-layer="130" from-port="3" to-layer="131" to-port="0" />
<edge from-layer="131" from-port="1" to-layer="133" to-port="0" />
<edge from-layer="132" from-port="0" to-layer="133" to-port="1" />
<edge from-layer="133" from-port="2" to-layer="135" to-port="0" />
<edge from-layer="134" from-port="0" to-layer="135" to-port="1" />
<edge from-layer="135" from-port="2" to-layer="136" to-port="1" />
<edge from-layer="136" from-port="2" to-layer="139" to-port="0" />
<edge from-layer="137" from-port="0" to-layer="139" to-port="1" />
<edge from-layer="138" from-port="0" to-layer="139" to-port="2" />
<edge from-layer="139" from-port="3" to-layer="141" to-port="0" />
<edge from-layer="140" from-port="0" to-layer="141" to-port="1" />
<edge from-layer="141" from-port="2" to-layer="143" to-port="0" />
<edge from-layer="142" from-port="0" to-layer="143" to-port="1" />
<edge from-layer="143" from-port="2" to-layer="146" to-port="0" />
<edge from-layer="143" from-port="2" to-layer="160" to-port="0" />
<edge from-layer="144" from-port="0" to-layer="146" to-port="1" />
<edge from-layer="145" from-port="0" to-layer="146" to-port="2" />
<edge from-layer="146" from-port="3" to-layer="147" to-port="0" />
<edge from-layer="147" from-port="1" to-layer="149" to-port="0" />
<edge from-layer="148" from-port="0" to-layer="149" to-port="1" />
<edge from-layer="149" from-port="2" to-layer="151" to-port="0" />
<edge from-layer="150" from-port="0" to-layer="151" to-port="1" />
<edge from-layer="151" from-port="2" to-layer="154" to-port="0" />
<edge from-layer="152" from-port="0" to-layer="154" to-port="1" />
<edge from-layer="153" from-port="0" to-layer="154" to-port="2" />
<edge from-layer="154" from-port="3" to-layer="155" to-port="0" />
<edge from-layer="155" from-port="1" to-layer="157" to-port="0" />
<edge from-layer="156" from-port="0" to-layer="157" to-port="1" />
<edge from-layer="157" from-port="2" to-layer="159" to-port="0" />
<edge from-layer="158" from-port="0" to-layer="159" to-port="1" />
<edge from-layer="159" from-port="2" to-layer="160" to-port="1" />
<edge from-layer="160" from-port="2" to-layer="163" to-port="0" />
<edge from-layer="160" from-port="2" to-layer="177" to-port="0" />
<edge from-layer="161" from-port="0" to-layer="163" to-port="1" />
<edge from-layer="162" from-port="0" to-layer="163" to-port="2" />
<edge from-layer="163" from-port="3" to-layer="164" to-port="0" />
<edge from-layer="164" from-port="1" to-layer="166" to-port="0" />
<edge from-layer="165" from-port="0" to-layer="166" to-port="1" />
<edge from-layer="166" from-port="2" to-layer="168" to-port="0" />
<edge from-layer="167" from-port="0" to-layer="168" to-port="1" />
<edge from-layer="168" from-port="2" to-layer="171" to-port="0" />
<edge from-layer="169" from-port="0" to-layer="171" to-port="1" />
<edge from-layer="170" from-port="0" to-layer="171" to-port="2" />
<edge from-layer="171" from-port="3" to-layer="172" to-port="0" />
<edge from-layer="172" from-port="1" to-layer="174" to-port="0" />
<edge from-layer="173" from-port="0" to-layer="174" to-port="1" />
<edge from-layer="174" from-port="2" to-layer="176" to-port="0" />
<edge from-layer="175" from-port="0" to-layer="176" to-port="1" />
<edge from-layer="176" from-port="2" to-layer="177" to-port="1" />
<edge from-layer="177" from-port="2" to-layer="180" to-port="0" />
<edge from-layer="177" from-port="2" to-layer="194" to-port="0" />
<edge from-layer="178" from-port="0" to-layer="180" to-port="1" />
<edge from-layer="179" from-port="0" to-layer="180" to-port="2" />
<edge from-layer="180" from-port="3" to-layer="181" to-port="0" />
<edge from-layer="181" from-port="1" to-layer="183" to-port="0" />
<edge from-layer="182" from-port="0" to-layer="183" to-port="1" />
<edge from-layer="183" from-port="2" to-layer="185" to-port="0" />
<edge from-layer="184" from-port="0" to-layer="185" to-port="1" />
<edge from-layer="185" from-port="2" to-layer="188" to-port="0" />
<edge from-layer="186" from-port="0" to-layer="188" to-port="1" />
<edge from-layer="187" from-port="0" to-layer="188" to-port="2" />
<edge from-layer="188" from-port="3" to-layer="189" to-port="0" />
<edge from-layer="189" from-port="1" to-layer="191" to-port="0" />
<edge from-layer="190" from-port="0" to-layer="191" to-port="1" />
<edge from-layer="191" from-port="2" to-layer="193" to-port="0" />
<edge from-layer="192" from-port="0" to-layer="193" to-port="1" />
<edge from-layer="193" from-port="2" to-layer="194" to-port="1" />
<edge from-layer="194" from-port="2" to-layer="197" to-port="0" />
<edge from-layer="195" from-port="0" to-layer="197" to-port="1" />
<edge from-layer="196" from-port="0" to-layer="197" to-port="2" />
<edge from-layer="197" from-port="3" to-layer="199" to-port="0" />
<edge from-layer="198" from-port="0" to-layer="199" to-port="1" />
<edge from-layer="199" from-port="2" to-layer="201" to-port="0" />
<edge from-layer="200" from-port="0" to-layer="201" to-port="1" />
<edge from-layer="201" from-port="2" to-layer="208" to-port="0" />
<edge from-layer="201" from-port="2" to-layer="203" to-port="0" />
<edge from-layer="202" from-port="0" to-layer="203" to-port="1" />
<edge from-layer="203" from-port="2" to-layer="205" to-port="0" />
<edge from-layer="204" from-port="0" to-layer="205" to-port="1" />
<edge from-layer="205" from-port="2" to-layer="222" to-port="0" />
<edge from-layer="206" from-port="0" to-layer="208" to-port="1" />
<edge from-layer="207" from-port="0" to-layer="208" to-port="2" />
<edge from-layer="208" from-port="3" to-layer="209" to-port="0" />
<edge from-layer="209" from-port="1" to-layer="211" to-port="0" />
<edge from-layer="210" from-port="0" to-layer="211" to-port="1" />
<edge from-layer="211" from-port="2" to-layer="213" to-port="0" />
<edge from-layer="212" from-port="0" to-layer="213" to-port="1" />
<edge from-layer="213" from-port="2" to-layer="216" to-port="0" />
<edge from-layer="214" from-port="0" to-layer="216" to-port="1" />
<edge from-layer="215" from-port="0" to-layer="216" to-port="2" />
<edge from-layer="216" from-port="3" to-layer="217" to-port="0" />
<edge from-layer="217" from-port="1" to-layer="219" to-port="0" />
<edge from-layer="218" from-port="0" to-layer="219" to-port="1" />
<edge from-layer="219" from-port="2" to-layer="221" to-port="0" />
<edge from-layer="220" from-port="0" to-layer="221" to-port="1" />
<edge from-layer="221" from-port="2" to-layer="222" to-port="1" />
<edge from-layer="222" from-port="2" to-layer="225" to-port="0" />
<edge from-layer="222" from-port="2" to-layer="239" to-port="0" />
<edge from-layer="223" from-port="0" to-layer="225" to-port="1" />
<edge from-layer="224" from-port="0" to-layer="225" to-port="2" />
<edge from-layer="225" from-port="3" to-layer="226" to-port="0" />
<edge from-layer="226" from-port="1" to-layer="228" to-port="0" />
<edge from-layer="227" from-port="0" to-layer="228" to-port="1" />
<edge from-layer="228" from-port="2" to-layer="230" to-port="0" />
<edge from-layer="229" from-port="0" to-layer="230" to-port="1" />
<edge from-layer="230" from-port="2" to-layer="233" to-port="0" />
<edge from-layer="231" from-port="0" to-layer="233" to-port="1" />
<edge from-layer="232" from-port="0" to-layer="233" to-port="2" />
<edge from-layer="233" from-port="3" to-layer="234" to-port="0" />
<edge from-layer="234" from-port="1" to-layer="236" to-port="0" />
<edge from-layer="235" from-port="0" to-layer="236" to-port="1" />
<edge from-layer="236" from-port="2" to-layer="238" to-port="0" />
<edge from-layer="237" from-port="0" to-layer="238" to-port="1" />
<edge from-layer="238" from-port="2" to-layer="239" to-port="1" />
<edge from-layer="239" from-port="2" to-layer="242" to-port="0" />
<edge from-layer="239" from-port="2" to-layer="256" to-port="0" />
<edge from-layer="240" from-port="0" to-layer="242" to-port="1" />
<edge from-layer="241" from-port="0" to-layer="242" to-port="2" />
<edge from-layer="242" from-port="3" to-layer="243" to-port="0" />
<edge from-layer="243" from-port="1" to-layer="245" to-port="0" />
<edge from-layer="244" from-port="0" to-layer="245" to-port="1" />
<edge from-layer="245" from-port="2" to-layer="247" to-port="0" />
<edge from-layer="246" from-port="0" to-layer="247" to-port="1" />
<edge from-layer="247" from-port="2" to-layer="250" to-port="0" />
<edge from-layer="248" from-port="0" to-layer="250" to-port="1" />
<edge from-layer="249" from-port="0" to-layer="250" to-port="2" />
<edge from-layer="250" from-port="3" to-layer="251" to-port="0" />
<edge from-layer="251" from-port="1" to-layer="253" to-port="0" />
<edge from-layer="252" from-port="0" to-layer="253" to-port="1" />
<edge from-layer="253" from-port="2" to-layer="255" to-port="0" />
<edge from-layer="254" from-port="0" to-layer="255" to-port="1" />
<edge from-layer="255" from-port="2" to-layer="256" to-port="1" />
<edge from-layer="256" from-port="2" to-layer="259" to-port="0" />
<edge from-layer="257" from-port="0" to-layer="259" to-port="1" />
<edge from-layer="258" from-port="0" to-layer="259" to-port="2" />
<edge from-layer="259" from-port="3" to-layer="261" to-port="0" />
<edge from-layer="260" from-port="0" to-layer="261" to-port="1" />
<edge from-layer="261" from-port="2" to-layer="263" to-port="0" />
<edge from-layer="262" from-port="0" to-layer="263" to-port="1" />
<edge from-layer="263" from-port="2" to-layer="265" to-port="0" />
<edge from-layer="263" from-port="2" to-layer="270" to-port="0" />
<edge from-layer="264" from-port="0" to-layer="265" to-port="1" />
<edge from-layer="265" from-port="2" to-layer="267" to-port="0" />
<edge from-layer="266" from-port="0" to-layer="267" to-port="1" />
<edge from-layer="267" from-port="2" to-layer="284" to-port="0" />
<edge from-layer="268" from-port="0" to-layer="270" to-port="1" />
<edge from-layer="269" from-port="0" to-layer="270" to-port="2" />
<edge from-layer="270" from-port="3" to-layer="271" to-port="0" />
<edge from-layer="271" from-port="1" to-layer="273" to-port="0" />
<edge from-layer="272" from-port="0" to-layer="273" to-port="1" />
<edge from-layer="273" from-port="2" to-layer="275" to-port="0" />
<edge from-layer="274" from-port="0" to-layer="275" to-port="1" />
<edge from-layer="275" from-port="2" to-layer="278" to-port="0" />
<edge from-layer="276" from-port="0" to-layer="278" to-port="1" />
<edge from-layer="277" from-port="0" to-layer="278" to-port="2" />
<edge from-layer="278" from-port="3" to-layer="279" to-port="0" />
<edge from-layer="279" from-port="1" to-layer="281" to-port="0" />
<edge from-layer="280" from-port="0" to-layer="281" to-port="1" />
<edge from-layer="281" from-port="2" to-layer="283" to-port="0" />
<edge from-layer="282" from-port="0" to-layer="283" to-port="1" />
<edge from-layer="283" from-port="2" to-layer="284" to-port="1" />
<edge from-layer="284" from-port="2" to-layer="287" to-port="0" />
<edge from-layer="284" from-port="2" to-layer="301" to-port="0" />
<edge from-layer="285" from-port="0" to-layer="287" to-port="1" />
<edge from-layer="286" from-port="0" to-layer="287" to-port="2" />
<edge from-layer="287" from-port="3" to-layer="288" to-port="0" />
<edge from-layer="288" from-port="1" to-layer="290" to-port="0" />
<edge from-layer="289" from-port="0" to-layer="290" to-port="1" />
<edge from-layer="290" from-port="2" to-layer="292" to-port="0" />
<edge from-layer="291" from-port="0" to-layer="292" to-port="1" />
<edge from-layer="292" from-port="2" to-layer="295" to-port="0" />
<edge from-layer="293" from-port="0" to-layer="295" to-port="1" />
<edge from-layer="294" from-port="0" to-layer="295" to-port="2" />
<edge from-layer="295" from-port="3" to-layer="296" to-port="0" />
<edge from-layer="296" from-port="1" to-layer="298" to-port="0" />
<edge from-layer="297" from-port="0" to-layer="298" to-port="1" />
<edge from-layer="298" from-port="2" to-layer="300" to-port="0" />
<edge from-layer="299" from-port="0" to-layer="300" to-port="1" />
<edge from-layer="300" from-port="2" to-layer="301" to-port="1" />
<edge from-layer="301" from-port="2" to-layer="304" to-port="0" />
<edge from-layer="301" from-port="2" to-layer="318" to-port="0" />
<edge from-layer="302" from-port="0" to-layer="304" to-port="1" />
<edge from-layer="303" from-port="0" to-layer="304" to-port="2" />
<edge from-layer="304" from-port="3" to-layer="305" to-port="0" />
<edge from-layer="305" from-port="1" to-layer="307" to-port="0" />
<edge from-layer="306" from-port="0" to-layer="307" to-port="1" />
<edge from-layer="307" from-port="2" to-layer="309" to-port="0" />
<edge from-layer="308" from-port="0" to-layer="309" to-port="1" />
<edge from-layer="309" from-port="2" to-layer="312" to-port="0" />
<edge from-layer="310" from-port="0" to-layer="312" to-port="1" />
<edge from-layer="311" from-port="0" to-layer="312" to-port="2" />
<edge from-layer="312" from-port="3" to-layer="313" to-port="0" />
<edge from-layer="313" from-port="1" to-layer="315" to-port="0" />
<edge from-layer="314" from-port="0" to-layer="315" to-port="1" />
<edge from-layer="315" from-port="2" to-layer="317" to-port="0" />
<edge from-layer="316" from-port="0" to-layer="317" to-port="1" />
<edge from-layer="317" from-port="2" to-layer="318" to-port="1" />
<edge from-layer="318" from-port="2" to-layer="321" to-port="0" />
<edge from-layer="319" from-port="0" to-layer="321" to-port="1" />
<edge from-layer="320" from-port="0" to-layer="321" to-port="2" />
<edge from-layer="321" from-port="3" to-layer="322" to-port="0" />
<edge from-layer="322" from-port="1" to-layer="324" to-port="0" />
<edge from-layer="323" from-port="0" to-layer="324" to-port="1" />
<edge from-layer="324" from-port="2" to-layer="326" to-port="0" />
<edge from-layer="325" from-port="0" to-layer="326" to-port="1" />
<edge from-layer="326" from-port="2" to-layer="327" to-port="0" />
</edges>
<rt_info>
<Runtime_version value="2024.5.0-17227-2441dcdbcf2" />
<conversion_parameters>
<framework value="pytorch" />
<is_python_object value="True" />
</conversion_parameters>
<optimum>
<diffusers_version value="0.31.0" />
<optimum_intel_version value="1.21.0.dev0+c887610" />
<optimum_version value="1.23.3" />
<pytorch_version value="2.4.1+cpu" />
<transformers_version value="4.45.2" />
</optimum>
</rt_info>
</net>