Upload LLama3_SAE
Browse files- config.json +1 -1
- configuration_llama3_SAE.py +45 -0
- modeling_llama3_SAE.py +795 -0
config.json
CHANGED
@@ -9,7 +9,7 @@
|
|
9 |
"attention_dropout": 0.0,
|
10 |
"auto_map": {
|
11 |
"AutoConfig": "RuHae/Llama3_SAE--configuration_llama3_SAE.LLama3_SAE_Config",
|
12 |
-
"AutoModelForCausalLM": "
|
13 |
},
|
14 |
"base_model_name": "meta-llama/Meta-Llama-3-8B",
|
15 |
"bos_token_id": 128000,
|
|
|
9 |
"attention_dropout": 0.0,
|
10 |
"auto_map": {
|
11 |
"AutoConfig": "RuHae/Llama3_SAE--configuration_llama3_SAE.LLama3_SAE_Config",
|
12 |
+
"AutoModelForCausalLM": "modeling_llama3_SAE.LLama3_SAE"
|
13 |
},
|
14 |
"base_model_name": "meta-llama/Meta-Llama-3-8B",
|
15 |
"bos_token_id": 128000,
|
configuration_llama3_SAE.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig, LlamaConfig
|
2 |
+
from typing import List, Callable
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
# class LLama3_SAE_Config(PretrainedConfig):
|
7 |
+
class LLama3_SAE_Config(LlamaConfig):
|
8 |
+
model_type = "llama3_SAE"
|
9 |
+
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
# hf_token: str = "",
|
13 |
+
# base_model_config: LlamaConfig = None,
|
14 |
+
base_model_name: str = "",
|
15 |
+
hook_block_num: int = 25,
|
16 |
+
n_latents: int = 12288,
|
17 |
+
n_inputs: int = 4096,
|
18 |
+
activation: str = "relu",
|
19 |
+
activation_k: int = 64,
|
20 |
+
site: str = "mlp",
|
21 |
+
tied: bool = False,
|
22 |
+
normalize: bool = False,
|
23 |
+
mod_features: List[int] = None,
|
24 |
+
mod_threshold: List[int] = None,
|
25 |
+
mod_replacement: List[int] = None,
|
26 |
+
mod_scaling: List[int] = None,
|
27 |
+
**kwargs,
|
28 |
+
):
|
29 |
+
# self.hf_token = hf_token
|
30 |
+
# self.base_model_config = base_model_config
|
31 |
+
self.base_model_name = base_model_name
|
32 |
+
self.hook_block_num = hook_block_num
|
33 |
+
self.n_latents = n_latents
|
34 |
+
self.n_inputs = n_inputs
|
35 |
+
self.activation = activation
|
36 |
+
self.activation_k = activation_k
|
37 |
+
self.site = site
|
38 |
+
self.tied = tied
|
39 |
+
self.normalize = normalize
|
40 |
+
self.mod_features = mod_features
|
41 |
+
self.mod_threshold = mod_threshold
|
42 |
+
self.mod_replacement = mod_replacement
|
43 |
+
self.mod_scaling = mod_scaling
|
44 |
+
|
45 |
+
super().__init__(**kwargs)
|
modeling_llama3_SAE.py
ADDED
@@ -0,0 +1,795 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Tuple, Union, Callable, Any
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
try:
|
8 |
+
from configuration_llama3_SAE import LLama3_SAE_Config
|
9 |
+
except:
|
10 |
+
from .configuration_llama3_SAE import LLama3_SAE_Config
|
11 |
+
|
12 |
+
from transformers import (
|
13 |
+
LlamaPreTrainedModel,
|
14 |
+
LlamaModel,
|
15 |
+
)
|
16 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
17 |
+
from transformers.cache_utils import Cache
|
18 |
+
from transformers.utils import (
|
19 |
+
add_start_docstrings,
|
20 |
+
add_start_docstrings_to_model_forward,
|
21 |
+
is_flash_attn_2_available,
|
22 |
+
is_flash_attn_greater_or_equal_2_10,
|
23 |
+
logging,
|
24 |
+
replace_return_docstrings,
|
25 |
+
)
|
26 |
+
|
27 |
+
import logging
|
28 |
+
|
29 |
+
logging.basicConfig(level=logging.INFO)
|
30 |
+
logger = logging.getLogger(__name__)
|
31 |
+
|
32 |
+
|
33 |
+
class LLama3_SAE(LlamaPreTrainedModel):
|
34 |
+
config_class = LLama3_SAE_Config
|
35 |
+
_tied_weights_keys = ["lm_head.weight"]
|
36 |
+
|
37 |
+
def __init__(self, config: LLama3_SAE_Config):
|
38 |
+
super().__init__(config)
|
39 |
+
self.model = LlamaModel(config)
|
40 |
+
self.vocab_size = config.vocab_size
|
41 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
42 |
+
|
43 |
+
if config.activation == "topk":
|
44 |
+
if isinstance(config.activation_k, int):
|
45 |
+
activation = TopK(torch.tensor(config.activation_k))
|
46 |
+
else:
|
47 |
+
activation = TopK(config.activation_k)
|
48 |
+
elif config.activation == "topk-tanh":
|
49 |
+
if isinstance(config.activation_k, int):
|
50 |
+
activation = TopK(torch.tensor(config.activation_k), nn.Tanh())
|
51 |
+
else:
|
52 |
+
activation = TopK(config.activation_k, nn.Tanh())
|
53 |
+
elif config.activation == "topk-sigmoid":
|
54 |
+
if isinstance(config.activation_k, int):
|
55 |
+
activation = TopK(torch.tensor(config.activation_k), nn.Sigmoid())
|
56 |
+
else:
|
57 |
+
activation = TopK(config.activation_k, nn.Sigmoid())
|
58 |
+
elif config.activation == "jumprelu":
|
59 |
+
activation = JumpReLu()
|
60 |
+
elif config.activation == "relu":
|
61 |
+
activation = "ReLU"
|
62 |
+
elif config.activation == "identity":
|
63 |
+
activation = "Identity"
|
64 |
+
else:
|
65 |
+
raise (
|
66 |
+
NotImplementedError,
|
67 |
+
f"Activation '{config.activation}' not implemented.",
|
68 |
+
)
|
69 |
+
|
70 |
+
self.SAE = Autoencoder(
|
71 |
+
n_inputs=config.n_inputs,
|
72 |
+
n_latents=config.n_latents,
|
73 |
+
activation=activation,
|
74 |
+
tied=False,
|
75 |
+
normalize=True,
|
76 |
+
)
|
77 |
+
|
78 |
+
self.hook = HookedTransformer_with_SAE_suppresion(
|
79 |
+
block=config.hook_block_num,
|
80 |
+
sae=self.SAE,
|
81 |
+
mod_features=config.mod_features,
|
82 |
+
mod_threshold=config.mod_threshold,
|
83 |
+
mod_replacement=config.mod_replacement,
|
84 |
+
mod_scaling=config.mod_scaling,
|
85 |
+
).register_with(self.model, config.site)
|
86 |
+
|
87 |
+
# Initialize weights and apply final processing
|
88 |
+
self.post_init()
|
89 |
+
|
90 |
+
def get_input_embeddings(self):
|
91 |
+
return self.model.embed_tokens
|
92 |
+
|
93 |
+
def set_input_embeddings(self, value):
|
94 |
+
self.model.embed_tokens = value
|
95 |
+
|
96 |
+
def get_output_embeddings(self):
|
97 |
+
return self.lm_head
|
98 |
+
|
99 |
+
def set_output_embeddings(self, new_embeddings):
|
100 |
+
self.lm_head = new_embeddings
|
101 |
+
|
102 |
+
def set_decoder(self, decoder):
|
103 |
+
self.model = decoder
|
104 |
+
|
105 |
+
def get_decoder(self):
|
106 |
+
return self.model
|
107 |
+
|
108 |
+
def forward(
|
109 |
+
self,
|
110 |
+
input_ids: torch.LongTensor = None,
|
111 |
+
attention_mask: Optional[torch.Tensor] = None,
|
112 |
+
position_ids: Optional[torch.LongTensor] = None,
|
113 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
114 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
115 |
+
labels: Optional[torch.LongTensor] = None,
|
116 |
+
use_cache: Optional[bool] = None,
|
117 |
+
output_attentions: Optional[bool] = None,
|
118 |
+
output_hidden_states: Optional[bool] = None,
|
119 |
+
return_dict: Optional[bool] = None,
|
120 |
+
cache_position: Optional[torch.LongTensor] = None,
|
121 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
122 |
+
r"""
|
123 |
+
Args:
|
124 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
125 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
126 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
127 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
128 |
+
|
129 |
+
Returns:
|
130 |
+
|
131 |
+
Example:
|
132 |
+
|
133 |
+
```python
|
134 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
135 |
+
|
136 |
+
>>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
|
137 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
138 |
+
|
139 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
140 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
141 |
+
|
142 |
+
>>> # Generate
|
143 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
144 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
145 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
146 |
+
```"""
|
147 |
+
output_attentions = (
|
148 |
+
output_attentions
|
149 |
+
if output_attentions is not None
|
150 |
+
else self.config.output_attentions
|
151 |
+
)
|
152 |
+
output_hidden_states = (
|
153 |
+
output_hidden_states
|
154 |
+
if output_hidden_states is not None
|
155 |
+
else self.config.output_hidden_states
|
156 |
+
)
|
157 |
+
return_dict = (
|
158 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
159 |
+
)
|
160 |
+
|
161 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
162 |
+
outputs = self.model(
|
163 |
+
input_ids=input_ids,
|
164 |
+
attention_mask=attention_mask,
|
165 |
+
position_ids=position_ids,
|
166 |
+
past_key_values=past_key_values,
|
167 |
+
inputs_embeds=inputs_embeds,
|
168 |
+
use_cache=use_cache,
|
169 |
+
output_attentions=output_attentions,
|
170 |
+
output_hidden_states=output_hidden_states,
|
171 |
+
return_dict=return_dict,
|
172 |
+
cache_position=cache_position,
|
173 |
+
)
|
174 |
+
|
175 |
+
hidden_states = outputs[0]
|
176 |
+
if self.config.pretraining_tp > 1:
|
177 |
+
lm_head_slices = self.lm_head.weight.split(
|
178 |
+
self.vocab_size // self.config.pretraining_tp, dim=0
|
179 |
+
)
|
180 |
+
logits = [
|
181 |
+
F.linear(hidden_states, lm_head_slices[i])
|
182 |
+
for i in range(self.config.pretraining_tp)
|
183 |
+
]
|
184 |
+
logits = torch.cat(logits, dim=-1)
|
185 |
+
else:
|
186 |
+
logits = self.lm_head(hidden_states)
|
187 |
+
logits = logits.float()
|
188 |
+
|
189 |
+
loss = None
|
190 |
+
if labels is not None:
|
191 |
+
# Shift so that tokens < n predict n
|
192 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
193 |
+
shift_labels = labels[..., 1:].contiguous()
|
194 |
+
|
195 |
+
# Flatten the tokens
|
196 |
+
loss_fct = nn.CrossEntropyLoss(reduction="none")
|
197 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
198 |
+
shift_labels = shift_labels.view(-1)
|
199 |
+
# Enable model parallelism
|
200 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
201 |
+
loss = loss_fct(shift_logits, shift_labels)
|
202 |
+
loss = loss.view(logits.size(0), -1)
|
203 |
+
mask = loss != 0
|
204 |
+
loss = loss.sum(dim=-1) / mask.sum(dim=-1)
|
205 |
+
|
206 |
+
if not return_dict:
|
207 |
+
output = (logits,) + outputs[1:]
|
208 |
+
return (loss,) + output if loss is not None else output
|
209 |
+
|
210 |
+
return CausalLMOutputWithPast(
|
211 |
+
loss=loss,
|
212 |
+
logits=logits,
|
213 |
+
past_key_values=outputs.past_key_values,
|
214 |
+
hidden_states=outputs.hidden_states,
|
215 |
+
attentions=outputs.attentions,
|
216 |
+
)
|
217 |
+
|
218 |
+
def prepare_inputs_for_generation(
|
219 |
+
self,
|
220 |
+
input_ids,
|
221 |
+
past_key_values=None,
|
222 |
+
attention_mask=None,
|
223 |
+
inputs_embeds=None,
|
224 |
+
cache_position=None,
|
225 |
+
use_cache=True,
|
226 |
+
**kwargs,
|
227 |
+
):
|
228 |
+
past_length = 0
|
229 |
+
if past_key_values is not None:
|
230 |
+
if isinstance(past_key_values, Cache):
|
231 |
+
past_length = (
|
232 |
+
cache_position[0]
|
233 |
+
if cache_position is not None
|
234 |
+
else past_key_values.get_seq_length()
|
235 |
+
)
|
236 |
+
max_cache_length = (
|
237 |
+
torch.tensor(
|
238 |
+
past_key_values.get_max_length(), device=input_ids.device
|
239 |
+
)
|
240 |
+
if past_key_values.get_max_length() is not None
|
241 |
+
else None
|
242 |
+
)
|
243 |
+
cache_length = (
|
244 |
+
past_length
|
245 |
+
if max_cache_length is None
|
246 |
+
else torch.min(max_cache_length, past_length)
|
247 |
+
)
|
248 |
+
# TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
|
249 |
+
else:
|
250 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
251 |
+
max_cache_length = None
|
252 |
+
|
253 |
+
# Keep only the unprocessed tokens:
|
254 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
255 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as input)
|
256 |
+
if (
|
257 |
+
attention_mask is not None
|
258 |
+
and attention_mask.shape[1] > input_ids.shape[1]
|
259 |
+
):
|
260 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
261 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
262 |
+
# input_ids based on the past_length.
|
263 |
+
elif past_length < input_ids.shape[1]:
|
264 |
+
input_ids = input_ids[:, past_length:]
|
265 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
266 |
+
|
267 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
268 |
+
if (
|
269 |
+
max_cache_length is not None
|
270 |
+
and attention_mask is not None
|
271 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
272 |
+
):
|
273 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
274 |
+
|
275 |
+
position_ids = kwargs.get("position_ids", None)
|
276 |
+
if attention_mask is not None and position_ids is None:
|
277 |
+
# create position_ids on the fly for batch generation
|
278 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
279 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
280 |
+
if past_key_values:
|
281 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
282 |
+
|
283 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
284 |
+
if inputs_embeds is not None and past_key_values is None:
|
285 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
286 |
+
else:
|
287 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
288 |
+
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
|
289 |
+
# TODO: use `next_tokens` directly instead.
|
290 |
+
model_inputs = {"input_ids": input_ids.contiguous()}
|
291 |
+
|
292 |
+
input_length = (
|
293 |
+
position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
|
294 |
+
)
|
295 |
+
if cache_position is None:
|
296 |
+
cache_position = torch.arange(
|
297 |
+
past_length, past_length + input_length, device=input_ids.device
|
298 |
+
)
|
299 |
+
elif use_cache:
|
300 |
+
cache_position = cache_position[-input_length:]
|
301 |
+
|
302 |
+
model_inputs.update(
|
303 |
+
{
|
304 |
+
"position_ids": position_ids,
|
305 |
+
"cache_position": cache_position,
|
306 |
+
"past_key_values": past_key_values,
|
307 |
+
"use_cache": use_cache,
|
308 |
+
"attention_mask": attention_mask,
|
309 |
+
}
|
310 |
+
)
|
311 |
+
return model_inputs
|
312 |
+
|
313 |
+
@staticmethod
|
314 |
+
def _reorder_cache(past_key_values, beam_idx):
|
315 |
+
reordered_past = ()
|
316 |
+
for layer_past in past_key_values:
|
317 |
+
reordered_past += (
|
318 |
+
tuple(
|
319 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
320 |
+
for past_state in layer_past
|
321 |
+
),
|
322 |
+
)
|
323 |
+
return reordered_past
|
324 |
+
|
325 |
+
|
326 |
+
def LN(
|
327 |
+
x: torch.Tensor, eps: float = 1e-5
|
328 |
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
329 |
+
mu = x.mean(dim=-1, keepdim=True)
|
330 |
+
x = x - mu
|
331 |
+
std = x.std(dim=-1, keepdim=True)
|
332 |
+
x = x / (std + eps)
|
333 |
+
return x, mu, std
|
334 |
+
|
335 |
+
|
336 |
+
class Autoencoder(nn.Module):
|
337 |
+
"""Sparse autoencoder
|
338 |
+
|
339 |
+
Implements:
|
340 |
+
latents = activation(encoder(x - pre_bias) + latent_bias)
|
341 |
+
recons = decoder(latents) + pre_bias
|
342 |
+
"""
|
343 |
+
|
344 |
+
def __init__(
|
345 |
+
self,
|
346 |
+
n_latents: int,
|
347 |
+
n_inputs: int,
|
348 |
+
activation: Callable = nn.ReLU(),
|
349 |
+
tied: bool = False,
|
350 |
+
normalize: bool = False,
|
351 |
+
) -> None:
|
352 |
+
"""
|
353 |
+
:param n_latents: dimension of the autoencoder latent
|
354 |
+
:param n_inputs: dimensionality of the original data (e.g residual stream, number of MLP hidden units)
|
355 |
+
:param activation: activation function
|
356 |
+
:param tied: whether to tie the encoder and decoder weights
|
357 |
+
"""
|
358 |
+
super().__init__()
|
359 |
+
self.n_inputs = n_inputs
|
360 |
+
self.n_latents = n_latents
|
361 |
+
|
362 |
+
self.pre_bias = nn.Parameter(torch.zeros(n_inputs))
|
363 |
+
self.encoder: nn.Module = nn.Linear(n_inputs, n_latents, bias=False)
|
364 |
+
self.latent_bias = nn.Parameter(torch.zeros(n_latents))
|
365 |
+
self.activation = activation
|
366 |
+
|
367 |
+
if isinstance(activation, JumpReLu):
|
368 |
+
self.threshold = nn.Parameter(torch.empty(n_latents))
|
369 |
+
torch.nn.init.constant_(self.threshold, 0.001)
|
370 |
+
self.forward = self.forward_jumprelu
|
371 |
+
elif isinstance(activation, TopK):
|
372 |
+
self.forward = self.forward_topk
|
373 |
+
else:
|
374 |
+
logger.warning(
|
375 |
+
f"Using TopK forward function even if activation is not TopK, but is {activation}"
|
376 |
+
)
|
377 |
+
self.forward = self.forward_topk
|
378 |
+
|
379 |
+
if tied:
|
380 |
+
# self.decoder: nn.Linear | TiedTranspose = TiedTranspose(self.encoder)
|
381 |
+
self.decoder = nn.Linear(n_latents, n_inputs, bias=False)
|
382 |
+
self.decoder.weight.data = self.encoder.weight.data.T.clone()
|
383 |
+
else:
|
384 |
+
self.decoder = nn.Linear(n_latents, n_inputs, bias=False)
|
385 |
+
self.normalize = normalize
|
386 |
+
|
387 |
+
def encode_pre_act(
|
388 |
+
self, x: torch.Tensor, latent_slice: slice = slice(None)
|
389 |
+
) -> torch.Tensor:
|
390 |
+
"""
|
391 |
+
:param x: input data (shape: [batch, n_inputs])
|
392 |
+
:param latent_slice: slice of latents to compute
|
393 |
+
Example: latent_slice = slice(0, 10) to compute only the first 10 latents.
|
394 |
+
:return: autoencoder latents before activation (shape: [batch, n_latents])
|
395 |
+
"""
|
396 |
+
x = x - self.pre_bias
|
397 |
+
latents_pre_act = F.linear(
|
398 |
+
x, self.encoder.weight[latent_slice], self.latent_bias[latent_slice]
|
399 |
+
)
|
400 |
+
return latents_pre_act
|
401 |
+
|
402 |
+
def preprocess(self, x: torch.Tensor) -> tuple[torch.Tensor, dict[str, Any]]:
|
403 |
+
if not self.normalize:
|
404 |
+
return x, dict()
|
405 |
+
x, mu, std = LN(x)
|
406 |
+
return x, dict(mu=mu, std=std)
|
407 |
+
|
408 |
+
def encode(self, x: torch.Tensor) -> tuple[torch.Tensor, dict[str, Any]]:
|
409 |
+
"""
|
410 |
+
:param x: input data (shape: [batch, n_inputs])
|
411 |
+
:return: autoencoder latents (shape: [batch, n_latents])
|
412 |
+
"""
|
413 |
+
x, info = self.preprocess(x)
|
414 |
+
return self.activation(self.encode_pre_act(x)), info
|
415 |
+
|
416 |
+
def decode(
|
417 |
+
self, latents: torch.Tensor, info: dict[str, Any] | None = None
|
418 |
+
) -> torch.Tensor:
|
419 |
+
"""
|
420 |
+
:param latents: autoencoder latents (shape: [batch, n_latents])
|
421 |
+
:return: reconstructed data (shape: [batch, n_inputs])
|
422 |
+
"""
|
423 |
+
ret = self.decoder(latents) + self.pre_bias
|
424 |
+
if self.normalize:
|
425 |
+
assert info is not None
|
426 |
+
ret = ret * info["std"] + info["mu"]
|
427 |
+
return ret
|
428 |
+
|
429 |
+
def forward_topk(
|
430 |
+
self, x: torch.Tensor
|
431 |
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
432 |
+
"""
|
433 |
+
:param x: input data (shape: [batch, n_inputs])
|
434 |
+
:return: autoencoder latents pre activation (shape: [batch, n_latents])
|
435 |
+
autoencoder latents (shape: [batch, n_latents])
|
436 |
+
reconstructed data (shape: [batch, n_inputs])
|
437 |
+
"""
|
438 |
+
x, info = self.preprocess(x)
|
439 |
+
latents_pre_act = self.encode_pre_act(x)
|
440 |
+
latents = self.activation(latents_pre_act)
|
441 |
+
recons = self.decode(latents, info)
|
442 |
+
|
443 |
+
return latents_pre_act, latents, recons
|
444 |
+
|
445 |
+
def forward_jumprelu(
|
446 |
+
self, x: torch.Tensor
|
447 |
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
448 |
+
"""
|
449 |
+
:param x: input data (shape: [batch, n_inputs])
|
450 |
+
:return: autoencoder latents pre activation (shape: [batch, n_latents])
|
451 |
+
autoencoder latents (shape: [batch, n_latents])
|
452 |
+
reconstructed data (shape: [batch, n_inputs])
|
453 |
+
"""
|
454 |
+
x, info = self.preprocess(x)
|
455 |
+
latents_pre_act = self.encode_pre_act(x)
|
456 |
+
latents = self.activation(F.relu(latents_pre_act), torch.exp(self.threshold))
|
457 |
+
recons = self.decode(latents, info)
|
458 |
+
|
459 |
+
return latents_pre_act, latents, recons
|
460 |
+
|
461 |
+
|
462 |
+
class TiedTranspose(nn.Module):
|
463 |
+
def __init__(self, linear: nn.Linear):
|
464 |
+
super().__init__()
|
465 |
+
self.linear = linear
|
466 |
+
|
467 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
468 |
+
assert self.linear.bias is None
|
469 |
+
# torch.nn.parameter.Parameter(layer_e.weights.T)
|
470 |
+
return F.linear(x, self.linear.weight.t(), None)
|
471 |
+
|
472 |
+
@property
|
473 |
+
def weight(self) -> torch.Tensor:
|
474 |
+
return self.linear.weight.t()
|
475 |
+
|
476 |
+
@property
|
477 |
+
def bias(self) -> torch.Tensor:
|
478 |
+
return self.linear.bias
|
479 |
+
|
480 |
+
|
481 |
+
class TopK(nn.Module):
|
482 |
+
def __init__(self, k: int, postact_fn: Callable = nn.ReLU()) -> None:
|
483 |
+
super().__init__()
|
484 |
+
self.k = k
|
485 |
+
self.postact_fn = postact_fn
|
486 |
+
|
487 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
488 |
+
topk = torch.topk(x, k=self.k, dim=-1)
|
489 |
+
values = self.postact_fn(topk.values)
|
490 |
+
# make all other values 0
|
491 |
+
result = torch.zeros_like(x)
|
492 |
+
result.scatter_(-1, topk.indices, values)
|
493 |
+
return result
|
494 |
+
|
495 |
+
|
496 |
+
class JumpReLu(nn.Module):
|
497 |
+
def __init__(self):
|
498 |
+
super().__init__()
|
499 |
+
|
500 |
+
def forward(self, input, threshold):
|
501 |
+
return JumpReLUFunction.apply(input, threshold)
|
502 |
+
|
503 |
+
|
504 |
+
class HeavyStep(nn.Module):
|
505 |
+
def __init__(self):
|
506 |
+
super().__init__()
|
507 |
+
|
508 |
+
def forward(self, input, threshold):
|
509 |
+
return HeavyStepFunction.apply(input, threshold)
|
510 |
+
|
511 |
+
|
512 |
+
def rectangle(x):
|
513 |
+
return (x > -0.5) & (x < 0.5)
|
514 |
+
|
515 |
+
|
516 |
+
class JumpReLUFunction(torch.autograd.Function):
|
517 |
+
@staticmethod
|
518 |
+
def forward(input, threshold):
|
519 |
+
output = input * (input > threshold)
|
520 |
+
return output
|
521 |
+
|
522 |
+
@staticmethod
|
523 |
+
def setup_context(ctx, inputs, output):
|
524 |
+
input, threshold = inputs
|
525 |
+
ctx.save_for_backward(input, threshold)
|
526 |
+
|
527 |
+
@staticmethod
|
528 |
+
def backward(ctx, grad_output):
|
529 |
+
bandwidth = 0.001
|
530 |
+
# bandwidth = 0.0001
|
531 |
+
input, threshold = ctx.saved_tensors
|
532 |
+
grad_input = grad_threshold = None
|
533 |
+
|
534 |
+
grad_input = input > threshold
|
535 |
+
grad_threshold = (
|
536 |
+
-(threshold / bandwidth)
|
537 |
+
* rectangle((input - threshold) / bandwidth)
|
538 |
+
* grad_output
|
539 |
+
)
|
540 |
+
|
541 |
+
return grad_input, grad_threshold
|
542 |
+
|
543 |
+
|
544 |
+
class HeavyStepFunction(torch.autograd.Function):
|
545 |
+
@staticmethod
|
546 |
+
def forward(input, threshold):
|
547 |
+
output = input * threshold
|
548 |
+
return output
|
549 |
+
|
550 |
+
@staticmethod
|
551 |
+
def setup_context(ctx, inputs, output):
|
552 |
+
input, threshold = inputs
|
553 |
+
ctx.save_for_backward(input, threshold)
|
554 |
+
|
555 |
+
@staticmethod
|
556 |
+
def backward(ctx, grad_output):
|
557 |
+
bandwidth = 0.001
|
558 |
+
# bandwidth = 0.0001
|
559 |
+
input, threshold = ctx.saved_tensors
|
560 |
+
grad_input = grad_threshold = None
|
561 |
+
|
562 |
+
grad_input = torch.zeros_like(input)
|
563 |
+
grad_threshold = (
|
564 |
+
-(1.0 / bandwidth)
|
565 |
+
* rectangle((input - threshold) / bandwidth)
|
566 |
+
* grad_output
|
567 |
+
)
|
568 |
+
|
569 |
+
return grad_input, grad_threshold
|
570 |
+
|
571 |
+
|
572 |
+
ACTIVATIONS_CLASSES = {
|
573 |
+
"ReLU": nn.ReLU,
|
574 |
+
"Identity": nn.Identity,
|
575 |
+
"TopK": TopK,
|
576 |
+
"JumpReLU": JumpReLu,
|
577 |
+
}
|
578 |
+
|
579 |
+
|
580 |
+
class HookedTransformer_with_SAE:
|
581 |
+
"""Auxilliary class used to extract mlp activations from transformer models."""
|
582 |
+
|
583 |
+
def __init__(self, block: int, sae) -> None:
|
584 |
+
self.block = block
|
585 |
+
self.sae = sae
|
586 |
+
|
587 |
+
self.remove_handle = (
|
588 |
+
None # Can be used to remove this hook from the model again
|
589 |
+
)
|
590 |
+
|
591 |
+
self._features = None
|
592 |
+
|
593 |
+
def register_with(self, model):
|
594 |
+
# At the moment only activations from Feed Forward MLP layer
|
595 |
+
self.remove_handle = model.layers[self.block].mlp.register_forward_hook(self)
|
596 |
+
|
597 |
+
return self
|
598 |
+
|
599 |
+
def pop(self) -> torch.Tensor:
|
600 |
+
"""Remove and return extracted feature from this hook.
|
601 |
+
|
602 |
+
We only allow access to the features this way to not have any lingering references to them.
|
603 |
+
"""
|
604 |
+
assert self._features is not None, "Feature extractor was not called yet!"
|
605 |
+
features = self._features
|
606 |
+
self._features = None
|
607 |
+
return features
|
608 |
+
|
609 |
+
def __call__(self, module, inp, outp) -> None:
|
610 |
+
self._features = outp
|
611 |
+
return self.sae(outp)[2]
|
612 |
+
|
613 |
+
|
614 |
+
class HookedTransformer_with_SAE_suppresion:
|
615 |
+
"""Auxilliary class used to extract mlp activations from transformer models."""
|
616 |
+
|
617 |
+
def __init__(
|
618 |
+
self,
|
619 |
+
block: int,
|
620 |
+
sae: Autoencoder,
|
621 |
+
mod_features: list = None,
|
622 |
+
mod_threshold: list = None,
|
623 |
+
mod_replacement: list = None,
|
624 |
+
mod_scaling: list = None,
|
625 |
+
mod_balance: bool = False,
|
626 |
+
multi_feature: bool = False,
|
627 |
+
) -> None:
|
628 |
+
self.block = block
|
629 |
+
self.sae = sae
|
630 |
+
|
631 |
+
self.remove_handle = (
|
632 |
+
None # Can be used to remove this hook from the model again
|
633 |
+
)
|
634 |
+
|
635 |
+
self._features = None
|
636 |
+
self.mod_features = mod_features
|
637 |
+
self.mod_threshold = mod_threshold
|
638 |
+
self.mod_replacement = mod_replacement
|
639 |
+
self.mod_scaling = mod_scaling
|
640 |
+
self.mod_balance = mod_balance
|
641 |
+
self.mod_vector = None
|
642 |
+
self.mod_vec_factor = 1.0
|
643 |
+
|
644 |
+
if multi_feature:
|
645 |
+
self.modify = self.modify_list
|
646 |
+
else:
|
647 |
+
self.modify = self.modify_single
|
648 |
+
|
649 |
+
if isinstance(self.sae.activation, JumpReLu):
|
650 |
+
logger.info("Setting __call__ function for JumpReLU.")
|
651 |
+
setattr(self, "call", self.__call__jumprelu)
|
652 |
+
elif isinstance(self.sae.activation, TopK):
|
653 |
+
logger.info("Setting __call__ function for TopK.")
|
654 |
+
setattr(self, "call", self.__call__topk)
|
655 |
+
else:
|
656 |
+
logger.warning(
|
657 |
+
f"Using TopK forward function even if activation is not TopK, but is {self.sae.activation}"
|
658 |
+
)
|
659 |
+
setattr(self, "call", self.__call__topk)
|
660 |
+
|
661 |
+
def register_with(self, model, site="mlp"):
|
662 |
+
self.site = site
|
663 |
+
# Decision on where to extract activations from
|
664 |
+
if site == "mlp": # output of the FF module of block
|
665 |
+
self.remove_handle = model.layers[self.block].mlp.register_forward_hook(
|
666 |
+
self
|
667 |
+
)
|
668 |
+
elif (
|
669 |
+
site == "block"
|
670 |
+
): # output of the residual connection AFTER it is added to the FF output
|
671 |
+
self.remove_handle = model.layers[self.block].register_forward_hook(self)
|
672 |
+
elif site == "attention":
|
673 |
+
raise NotImplementedError
|
674 |
+
else:
|
675 |
+
raise NotImplementedError
|
676 |
+
|
677 |
+
# self.remove_handle = model.model.layers[self.block].mlp.act_fn.register_forward_hook(self)
|
678 |
+
|
679 |
+
return self
|
680 |
+
|
681 |
+
def modify_list(self, latents: torch.Tensor) -> torch.Tensor:
|
682 |
+
if self.mod_replacement is not None:
|
683 |
+
for feat, thresh, mod in zip(
|
684 |
+
self.mod_features, self.mod_threshold, self.mod_replacement
|
685 |
+
):
|
686 |
+
latents[:, :, feat][latents[:, :, feat] > thresh] = mod
|
687 |
+
elif self.mod_scaling is not None:
|
688 |
+
for feat, thresh, mod in zip(
|
689 |
+
self.mod_features, self.mod_threshold, self.mod_scaling
|
690 |
+
):
|
691 |
+
latents[:, :, feat][latents[:, :, feat] > thresh] *= mod
|
692 |
+
elif self.mod_vector is not None:
|
693 |
+
latents = latents + self.mod_vec_factor * self.mod_vector
|
694 |
+
else:
|
695 |
+
pass
|
696 |
+
|
697 |
+
return latents
|
698 |
+
|
699 |
+
def modify_single(self, latents: torch.Tensor) -> torch.Tensor:
|
700 |
+
old_cond_feats = latents[:, :, self.mod_features]
|
701 |
+
if self.mod_replacement is not None:
|
702 |
+
# latents[:, :, self.mod_features][
|
703 |
+
# latents[:, :, self.mod_features] > self.mod_threshold
|
704 |
+
# ] = self.mod_replacement
|
705 |
+
latents[:, :, self.mod_features] = self.mod_replacement
|
706 |
+
elif self.mod_scaling is not None:
|
707 |
+
latents_scaled = latents.clone()
|
708 |
+
latents_scaled[:, :, self.mod_features][
|
709 |
+
latents[:, :, self.mod_features] > 0
|
710 |
+
] *= self.mod_scaling
|
711 |
+
latents_scaled[:, :, self.mod_features][
|
712 |
+
latents[:, :, self.mod_features] < 0
|
713 |
+
] *= -1 * self.mod_scaling
|
714 |
+
latents = latents_scaled
|
715 |
+
# latents[:, :, self.mod_features] *= self.mod_scaling
|
716 |
+
elif self.mod_vector is not None:
|
717 |
+
latents = latents + self.mod_vec_factor * self.mod_vector
|
718 |
+
else:
|
719 |
+
pass
|
720 |
+
|
721 |
+
if self.mod_balance:
|
722 |
+
# logger.warning("The balancing does not work yet!!!")
|
723 |
+
# TODO: Look into it more closely, not sure if this is correct
|
724 |
+
num_feat = latents.shape[2] - 1
|
725 |
+
diff = old_cond_feats - latents[:, :, self.mod_features]
|
726 |
+
if self.mod_features != 0:
|
727 |
+
latents[:, :, : self.mod_features] += (diff / num_feat)[:, :, None]
|
728 |
+
latents[:, :, self.mod_features + 1 :] += (diff / num_feat)[:, :, None]
|
729 |
+
|
730 |
+
return latents
|
731 |
+
|
732 |
+
def pop(self) -> torch.Tensor:
|
733 |
+
"""Remove and return extracted feature from this hook.
|
734 |
+
|
735 |
+
We only allow access to the features this way to not have any lingering references to them.
|
736 |
+
"""
|
737 |
+
assert self._features is not None, "Feature extractor was not called yet!"
|
738 |
+
if isinstance(self._features, tuple):
|
739 |
+
features = self._features[0]
|
740 |
+
else:
|
741 |
+
features = self._features
|
742 |
+
self._features = None
|
743 |
+
return features
|
744 |
+
|
745 |
+
def __call__topk(self, module, inp, outp) -> torch.Tensor:
|
746 |
+
self._features = outp
|
747 |
+
if isinstance(self._features, tuple):
|
748 |
+
features = self._features[0]
|
749 |
+
else:
|
750 |
+
features = self._features
|
751 |
+
|
752 |
+
if self.mod_features is None:
|
753 |
+
recons = features
|
754 |
+
else:
|
755 |
+
x, info = self.sae.preprocess(features)
|
756 |
+
latents_pre_act = self.sae.encode_pre_act(x)
|
757 |
+
latents = self.sae.activation(latents_pre_act)
|
758 |
+
# latents[:, :, self.mod_features] = F.sigmoid(
|
759 |
+
# latents_pre_act[:, :, self.mod_features]
|
760 |
+
# )
|
761 |
+
# latents[:, :, self.mod_features] = torch.abs(latents_pre_act[:, :, self.mod_features])
|
762 |
+
# latents[:, :, self.mod_features] = latents_pre_act[:, :, self.mod_features]
|
763 |
+
mod_latents = self.modify(latents)
|
764 |
+
# mod_latents[:, :, self.mod_features] = F.sigmoid(
|
765 |
+
# mod_latents[:, :, self.mod_features]
|
766 |
+
# )
|
767 |
+
|
768 |
+
recons = self.sae.decode(mod_latents, info)
|
769 |
+
|
770 |
+
if isinstance(self._features, tuple):
|
771 |
+
outp = list(outp)
|
772 |
+
outp[0] = recons
|
773 |
+
return tuple(outp)
|
774 |
+
else:
|
775 |
+
return recons
|
776 |
+
|
777 |
+
def __call__jumprelu(self, module, inp, outp) -> torch.Tensor:
|
778 |
+
self._features = outp
|
779 |
+
if self.mod_features is None:
|
780 |
+
recons = outp
|
781 |
+
else:
|
782 |
+
x, info = self.sae.preprocess(outp)
|
783 |
+
latents_pre_act = self.sae.encode_pre_act(x)
|
784 |
+
latents = self.sae.activation(
|
785 |
+
F.relu(latents_pre_act), torch.exp(self.sae.threshold)
|
786 |
+
)
|
787 |
+
latents[:, :, self.mod_features] = latents_pre_act[:, :, self.mod_features]
|
788 |
+
mod_latents = self.modify(latents)
|
789 |
+
|
790 |
+
recons = self.sae.decode(mod_latents, info)
|
791 |
+
|
792 |
+
return recons
|
793 |
+
|
794 |
+
def __call__(self, module, inp, outp) -> torch.Tensor:
|
795 |
+
return self.call(module, inp, outp)
|