|
import torch |
|
from torch import nn |
|
from transformers import CLIPVisionModel, CLIPImageProcessor |
|
|
|
class VisualToGPTMapping(nn.Module): |
|
def __init__(self, visual_emb_dim, gpt_emb_dim, num_gpt_embs, num_heads): |
|
super(VisualToGPTMapping, self).__init__() |
|
self.transformer_layer = TransformerEncoderLayer(d_model=visual_emb_dim, nhead=num_heads, batch_first=True, norm_first=False) |
|
self.linear = Linear(visual_emb_dim, gpt_emb_dim) |
|
self.n_embeddings = num_gpt_embs |
|
self.embedding_dim = gpt_emb_dim |
|
def forward(self, visual_embs): |
|
out = self.transformer_layer(visual_embs) |
|
out = self.linear(out).view(-1, self.n_embeddings, self.embedding_dim) |
|
return out |
|
|
|
class CLIPVisionTower(nn.Module): |
|
def __init__(self, vision_tower, delay_load=False): |
|
super().__init__() |
|
|
|
self.is_loaded = False |
|
|
|
self.vision_tower_name = vision_tower |
|
self.select_layer = -2 |
|
self.select_feature = 'patch' |
|
|
|
if not delay_load: |
|
self.load_model() |
|
else: |
|
self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name) |
|
|
|
def load_model(self): |
|
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name) |
|
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name) |
|
self.vision_tower.requires_grad_(False) |
|
|
|
self.is_loaded = True |
|
|
|
def feature_select(self, image_forward_outs): |
|
image_features = image_forward_outs.hidden_states[self.select_layer] |
|
if self.select_feature == 'patch': |
|
image_features = image_features[:, 1:] |
|
elif self.select_feature == 'cls_patch': |
|
image_features = image_features |
|
else: |
|
raise ValueError(f'Unexpected select feature: {self.select_feature}') |
|
return image_features |
|
|
|
@torch.no_grad() |
|
def forward(self, images): |
|
if type(images) is list: |
|
image_features = [] |
|
for image in images: |
|
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) |
|
image_feature = self.feature_select(image_forward_out).to(image.dtype) |
|
image_features.append(image_feature) |
|
else: |
|
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) |
|
image_features = self.feature_select(image_forward_outs).to(images.dtype) |
|
|
|
return image_features |
|
|
|
@property |
|
def dummy_feature(self): |
|
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) |
|
|
|
@property |
|
def dtype(self): |
|
return self.vision_tower.dtype |
|
|
|
@property |
|
def device(self): |
|
return self.vision_tower.device |
|
|
|
@property |
|
def config(self): |
|
if self.is_loaded: |
|
return self.vision_tower.config |
|
else: |
|
return self.cfg_only |
|
|
|
@property |
|
def hidden_size(self): |
|
return self.config.hidden_size |