## Usage method: ```python from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer import torch from PIL import Image model = VisionEncoderDecoderModel.from_pretrained("AIris-Channel/vit-gpt2-verifycode-caption") feature_extractor = ViTImageProcessor.from_pretrained("AIris-Channel/vit-gpt2-verifycode-caption") tokenizer = AutoTokenizer.from_pretrained("AIris-Channel/vit-gpt2-verifycode-caption") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) max_length = 16 num_beams = 4 gen_kwargs = {"max_length": max_length, "num_beams": num_beams} def predict_step(image_paths): images = [] for image_path in image_paths: i_image = Image.open(image_path) if i_image.mode != "RGB": i_image = i_image.convert(mode="RGB") images.append(i_image) pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values pixel_values = pixel_values.to(device) output_ids = model.generate(pixel_values, **gen_kwargs) preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] return preds pred=predict_step(['ZZZTVESE.jpg']) print(pred) #zzztvese ```