File size: 3,806 Bytes
462ebbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
---
pipeline_tag: text-generation
inference: false
license: apache-2.0
library_name: transformers
tags:
- language
- granite-3.0
- llama-cpp
- gguf-my-repo
new_version: ibm-granite/granite-3.1-1b-a400m-base
base_model: ibm-granite/granite-3.0-1b-a400m-base
model-index:
- name: granite-3.0-1b-a400m-base
results:
- task:
type: text-generation
dataset:
name: MMLU
type: human-exams
metrics:
- type: pass@1
value: 25.69
name: pass@1
- type: pass@1
value: 11.38
name: pass@1
- type: pass@1
value: 19.96
name: pass@1
- task:
type: text-generation
dataset:
name: WinoGrande
type: commonsense
metrics:
- type: pass@1
value: 62.43
name: pass@1
- type: pass@1
value: 39
name: pass@1
- type: pass@1
value: 35.76
name: pass@1
- type: pass@1
value: 75.35
name: pass@1
- type: pass@1
value: 64.92
name: pass@1
- type: pass@1
value: 39.49
name: pass@1
- task:
type: text-generation
dataset:
name: BoolQ
type: reading-comprehension
metrics:
- type: pass@1
value: 65.44
name: pass@1
- type: pass@1
value: 17.78
name: pass@1
- task:
type: text-generation
dataset:
name: ARC-C
type: reasoning
metrics:
- type: pass@1
value: 38.14
name: pass@1
- type: pass@1
value: 24.41
name: pass@1
- type: pass@1
value: 29.84
name: pass@1
- type: pass@1
value: 33.99
name: pass@1
- task:
type: text-generation
dataset:
name: HumanEval
type: code
metrics:
- type: pass@1
value: 21.95
name: pass@1
- type: pass@1
value: 23.2
name: pass@1
- task:
type: text-generation
dataset:
name: GSM8K
type: math
metrics:
- type: pass@1
value: 19.26
name: pass@1
- type: pass@1
value: 8.96
name: pass@1
---
# AIronMind/granite-3.0-1b-a400m-base-Q4_K_M-GGUF
This model was converted to GGUF format from [`ibm-granite/granite-3.0-1b-a400m-base`](https://huggingface.co/ibm-granite/granite-3.0-1b-a400m-base) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/ibm-granite/granite-3.0-1b-a400m-base) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo AIronMind/granite-3.0-1b-a400m-base-Q4_K_M-GGUF --hf-file granite-3.0-1b-a400m-base-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo AIronMind/granite-3.0-1b-a400m-base-Q4_K_M-GGUF --hf-file granite-3.0-1b-a400m-base-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo AIronMind/granite-3.0-1b-a400m-base-Q4_K_M-GGUF --hf-file granite-3.0-1b-a400m-base-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo AIronMind/granite-3.0-1b-a400m-base-Q4_K_M-GGUF --hf-file granite-3.0-1b-a400m-base-q4_k_m.gguf -c 2048
```
|