update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: convnextv2-large-1k-224-finetuned-Lesion-Classification-HAM10000-AH-60-20-20
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: imagefolder
|
17 |
+
type: imagefolder
|
18 |
+
config: Augmented-Final
|
19 |
+
split: train
|
20 |
+
args: Augmented-Final
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.986639260020555
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# convnextv2-large-1k-224-finetuned-Lesion-Classification-HAM10000-AH-60-20-20
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [facebook/convnextv2-large-1k-224](https://huggingface.co/facebook/convnextv2-large-1k-224) on the imagefolder dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.0976
|
35 |
+
- Accuracy: 0.9866
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 5e-05
|
55 |
+
- train_batch_size: 16
|
56 |
+
- eval_batch_size: 16
|
57 |
+
- seed: 42
|
58 |
+
- gradient_accumulation_steps: 2
|
59 |
+
- total_train_batch_size: 32
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- lr_scheduler_warmup_ratio: 0.9
|
63 |
+
- num_epochs: 12
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 1.8977 | 1.0 | 122 | 1.8949 | 0.2939 |
|
70 |
+
| 1.6493 | 2.0 | 244 | 1.6449 | 0.5447 |
|
71 |
+
| 1.239 | 3.0 | 366 | 1.2819 | 0.6886 |
|
72 |
+
| 0.9342 | 4.0 | 488 | 0.9664 | 0.7276 |
|
73 |
+
| 0.7011 | 5.0 | 610 | 0.6760 | 0.8356 |
|
74 |
+
| 0.5809 | 6.0 | 732 | 0.5792 | 0.8469 |
|
75 |
+
| 0.4846 | 7.0 | 854 | 0.4280 | 0.8890 |
|
76 |
+
| 0.6914 | 8.0 | 976 | 0.4121 | 0.8849 |
|
77 |
+
| 0.3815 | 9.0 | 1098 | 0.2751 | 0.9353 |
|
78 |
+
| 0.2931 | 10.0 | 1220 | 0.2980 | 0.9198 |
|
79 |
+
| 0.2485 | 11.0 | 1342 | 0.3090 | 0.9106 |
|
80 |
+
| 0.1759 | 12.0 | 1464 | 0.0976 | 0.9866 |
|
81 |
+
|
82 |
+
|
83 |
+
### Framework versions
|
84 |
+
|
85 |
+
- Transformers 4.30.2
|
86 |
+
- Pytorch 2.0.1+cu118
|
87 |
+
- Datasets 2.13.1
|
88 |
+
- Tokenizers 0.13.3
|