--- license: apache-2.0 base_model: microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-LungCancer-LC25000-AH-40-30-30-3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.992469545957918 --- # swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-LungCancer-LC25000-AH-40-30-30-3 This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft](https://huggingface.co/microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0191 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.5 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2297 | 1.0 | 187 | 0.3401 | 0.9231 | | 0.3255 | 2.0 | 374 | 0.1010 | 0.9643 | | 0.4962 | 3.0 | 561 | 0.0967 | 0.9608 | | 0.181 | 4.0 | 749 | 0.1624 | 0.9296 | | 0.2266 | 5.0 | 936 | 0.0975 | 0.9615 | | 0.0981 | 6.0 | 1123 | 0.0577 | 0.9783 | | 0.0629 | 6.99 | 1309 | 0.0191 | 0.9925 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3