AMKCode commited on
Commit
cb9e7ac
1 Parent(s): 40e0de9

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-7B-Instruct
3
+ language:
4
+ - en
5
+ library_name: transformers
6
+ license: apache-2.0
7
+ license_link: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct/blob/main/LICENSE
8
+ pipeline_tag: text-generation
9
+ tags:
10
+ - chat
11
+ - mlc-ai
12
+ - MLC-Weight-Conversion
13
+ ---
14
+ ---
15
+ library_name: mlc-llm
16
+ base_model: Qwen/Qwen2.5-7B-Instruct
17
+ tags:
18
+ - mlc-llm
19
+ - web-llm
20
+ ---
21
+
22
+ # AMKCode/Qwen2.5-7B-Instruct-q4f16_1-MLC
23
+
24
+ This is the [Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) model in MLC format `q4f16_1`.
25
+ The conversion was done using the [MLC-Weight-Conversion](https://huggingface.co/spaces/mlc-ai/MLC-Weight-Conversion) space.
26
+ The model can be used for projects [MLC-LLM](https://github.com/mlc-ai/mlc-llm) and [WebLLM](https://github.com/mlc-ai/web-llm).
27
+
28
+ ## Example Usage
29
+
30
+ Here are some examples of using this model in MLC LLM.
31
+ Before running the examples, please install MLC LLM by following the [installation documentation](https://llm.mlc.ai/docs/install/mlc_llm.html#install-mlc-packages).
32
+
33
+ ### Chat
34
+
35
+ In command line, run
36
+ ```bash
37
+ mlc_llm chat HF://mlc-ai/AMKCode/Qwen2.5-7B-Instruct-q4f16_1-MLC
38
+ ```
39
+
40
+ ### REST Server
41
+
42
+ In command line, run
43
+ ```bash
44
+ mlc_llm serve HF://mlc-ai/AMKCode/Qwen2.5-7B-Instruct-q4f16_1-MLC
45
+ ```
46
+
47
+ ### Python API
48
+
49
+ ```python
50
+ from mlc_llm import MLCEngine
51
+
52
+ # Create engine
53
+ model = "HF://mlc-ai/AMKCode/Qwen2.5-7B-Instruct-q4f16_1-MLC"
54
+ engine = MLCEngine(model)
55
+
56
+ # Run chat completion in OpenAI API.
57
+ for response in engine.chat.completions.create(
58
+ messages=[{"role": "user", "content": "What is the meaning of life?"}],
59
+ model=model,
60
+ stream=True,
61
+ ):
62
+ for choice in response.choices:
63
+ print(choice.delta.content, end="", flush=True)
64
+ print("\n")
65
+
66
+ engine.terminate()
67
+ ```
68
+
69
+ ## Documentation
70
+
71
+ For more information on MLC LLM project, please visit our [documentation](https://llm.mlc.ai/docs/) and [GitHub repo](http://github.com/mlc-ai/mlc-llm).