File size: 2,090 Bytes
b002122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0cb9a6
b002122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---

license: apache-2.0
base_model: facebook/convnext-large-384-22k-1k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: convnext-large-384-22k-1k-finetuned-climbing-test1
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9827586206896551
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# convnext-large-384-22k-1k-finetuned-climbing-test1

This model is a fine-tuned version of [facebook/convnext-large-384-22k-1k](https://huggingface.co/facebook/convnext-large-384-22k-1k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0935
- Accuracy: 0.9828

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05

- train_batch_size: 8

- eval_batch_size: 8

- seed: 42

- gradient_accumulation_steps: 16

- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1

- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.6932        | 0.9796 | 12   | 0.0935          | 0.9828   |
| 0.1248        | 1.9592 | 24   | 0.0691          | 0.9828   |
| 0.0587        | 2.9388 | 36   | 0.0612          | 0.9828   |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.2.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1