a2c-PandaReachDense-v3 / config.json
AMfeta99's picture
Initial commit
1ba1b97
raw
history blame
14.4 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7bb2f52aac20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bb2f52ad940>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700143489194359008, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAm/NzPjS/Ijyyr+E+LqgOv4P0274U07E+TJtcv+HXnb/NZ6O/qoANP9I13j55Vy0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaHycP7Q/z793zlI/3xqKv9dT6r6tuF4/x3M9v2a9CL9mHJa/glLRP94JwT64Jrk/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACb83M+NL8iPLKv4T6W9+g+CNAZuxOcwj4uqA6/g/TbvhTTsT6vGlG/BtTRv9nCYz9Mm1y/4dedv81no78OIkK/Yo1Qv2HJcr+qgA0/0jXePnlXLT8Wlck/H67IP4KyjT+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.23823397 0.00993328 0.44079357]\n [-0.5572537 -0.42959985 0.34731352]\n [-0.86174464 -1.2331506 -1.2766052 ]\n [ 0.5527445 0.43400437 0.677116 ]]", "desired_goal": "[[ 1.2225466 -1.6191316 0.8234629]\n [-1.078945 -0.4576709 0.8700054]\n [-0.7400479 -0.53414 -1.1727417]\n [ 1.6353304 0.3770284 1.4464941]]", "observation": "[[ 0.23823397 0.00993328 0.44079357 0.45501393 -0.00234699 0.380097 ]\n [-0.5572537 -0.42959985 0.34731352 -0.8168134 -1.639283 0.8896919 ]\n [-0.86174464 -1.2331506 -1.2766052 -0.75833213 -0.81465733 -0.9483853 ]\n [ 0.5527445 0.43400437 0.677116 1.5748622 1.5678138 1.1070101 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYzMKPlfb+b2hJbA98FqrPZyGD7fcASY+Yk2ZPO4SDjzjgxU96njjPbHr/b36l0w+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 1.3496165e-01 -1.2200039e-01 8.6009271e-02]\n [ 8.3669543e-02 -8.5548054e-06 1.6211647e-01]\n [ 1.8713657e-02 8.6715054e-03 3.6502730e-02]\n [ 1.1107047e-01 -1.2398470e-01 1.9979849e-01]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8JISUTtb9uMAWyUSwKMAXSUR0CmylBpHqeLdX2UKGgGR7/cjafzz3AVaAdLBWgIR0Cmyx/lhgE2dX2UKGgGR7/TP0I1LrX2aAdLA2gIR0Cmypc+zMRpdX2UKGgGR7/HAnDziCJ5aAdLA2gIR0Cmyu8IAwPAdX2UKGgGR7/UNUOuq3mWaAdLA2gIR0CmymqR2bG4dX2UKGgGR7/O/gR9PUKBaAdLA2gIR0Cmyzgf2bobdX2UKGgGR7/WOJ+DvmYCaAdLA2gIR0Cmyq+SbH6udX2UKGgGR7+7HlwLmZE2aAdLAmgIR0Cmy0WKMvRJdX2UKGgGR7/SR9w3o9s8aAdLA2gIR0CmywO01IiDdX2UKGgGR7+KVUuL74zraAdLAWgIR0Cmyw3FLnLadX2UKGgGR7/S0163RXwLaAdLBGgIR0Cmyols54nndX2UKGgGR7/Xmce8wpOOaAdLBGgIR0Cmys4VqN6xdX2UKGgGR7/TuNgjQiRoaAdLA2gIR0Cmy15s9B8hdX2UKGgGR7+7K4hEBsAOaAdLAmgIR0CmyxyZjQRgdX2UKGgGR7/GgxJul41QaAdLAmgIR0Cmyphd2PkrdX2UKGgGR7+2uaF23azvaAdLAmgIR0CmyqXueBhAdX2UKGgGR7/J+kP+XJHRaAdLA2gIR0CmyzUfPompdX2UKGgGR7/WlWfbsWweaAdLBGgIR0Cmyu8NH6MzdX2UKGgGR7/cI0ZWJaaDaAdLBGgIR0Cmy37Q9ic5dX2UKGgGR7+05ggHNX5naAdLAmgIR0CmyrgctGutdX2UKGgGR7/OV1Oj7ALzaAdLA2gIR0Cmy0rZzxPPdX2UKGgGR7/PVwPy08eTaAdLA2gIR0CmywR/ViF1dX2UKGgGR7/ObGWD6FdtaAdLA2gIR0Cmy5TCcf/4dX2UKGgGR7/KT9KmKqGUaAdLA2gIR0Cmys5oPCl8dX2UKGgGR7+5nSOR1X/6aAdLAmgIR0CmyxbS7Xg+dX2UKGgGR7/Q9roGIKtxaAdLA2gIR0Cmy2SYoiLVdX2UKGgGR7/AH6dlNDc/aAdLAmgIR0CmyyS/sVtXdX2UKGgGR7/I8yvcJtzkaAdLA2gIR0CmyucuBczJdX2UKGgGR7/XKWszVMEiaAdLBGgIR0Cmy7TTnaFmdX2UKGgGR7/Iukk8ifQKaAdLA2gIR0Cmy3mcnVoYdX2UKGgGR7/ApVCHARChaAdLAmgIR0CmyvVNQCSzdX2UKGgGR7/CNOM2m52AaAdLAmgIR0Cmy8aWgOBldX2UKGgGR7/No8p1A7gbaAdLA2gIR0Cmyz349HMEdX2UKGgGR7+eqaPS2H+IaAdLAWgIR0Cmy0UlZ5iWdX2UKGgGR7/FvuPV/c33aAdLA2gIR0Cmy5KEvkBCdX2UKGgGR7/UY+jdpItlaAdLA2gIR0Cmy9uzQeFMdX2UKGgGR7/XIDYAbQ1KaAdLBGgIR0CmyxToUzsQdX2UKGgGR7/HQZXMhX8waAdLAmgIR0Cmy6CWmgrZdX2UKGgGR7/VZU1hsqJ/aAdLBGgIR0Cmy2Oyu6mPdX2UKGgGR7/K79ycTakAaAdLA2gIR0Cmy/NliBoVdX2UKGgGR7+ZD3M6ij+KaAdLAWgIR0Cmy2q6OHWSdX2UKGgGR7/WRA8jiXIEaAdLA2gIR0CmyyzTfBN3dX2UKGgGR7/V1xKg7HQyaAdLA2gIR0Cmy7gK4QSSdX2UKGgGR7+2FAVwgkkbaAdLAmgIR0Cmy3dUbT+edX2UKGgGR7/S68g6ltTDaAdLA2gIR0CmzAaHTI/8dX2UKGgGR7+67tiQT238aAdLAmgIR0Cmy8WOZLIxdX2UKGgGR7+1A7gbZOBUaAdLAmgIR0Cmy4gIIF/ydX2UKGgGR7/YrC3w1BMSaAdLBGgIR0Cmy0oybhFWdX2UKGgGR7/DxiobXHzZaAdLAmgIR0CmzBetCAtndX2UKGgGR7+yI42jwhGIaAdLAmgIR0Cmy9W7OE/TdX2UKGgGR7/SlijL0SRKaAdLA2gIR0Cmy50vwmVrdX2UKGgGR7/MI3R5TqB3aAdLA2gIR0Cmy19j5KvndX2UKGgGR7/T52Qnx8UmaAdLA2gIR0Cmy+qifxtpdX2UKGgGR7/bBNEgGKQ8aAdLBWgIR0CmzDwHqu8sdX2UKGgGR7/UzNUwSJ0oaAdLA2gIR0Cmy7NM495hdX2UKGgGR7/OaOPvKEFoaAdLA2gIR0Cmy3WoFV1fdX2UKGgGR7/QwkPczqKQaAdLA2gIR0CmzAGz8gp0dX2UKGgGR7+boB7u2JBPaAdLAWgIR0Cmy7s2vStvdX2UKGgGR7/TJsfq5byIaAdLA2gIR0CmzFFv60pmdX2UKGgGR7+yeYlY2bXpaAdLAmgIR0CmzA+cpb2UdX2UKGgGR7++KsMiKR+0aAdLAmgIR0Cmy8kUTL4fdX2UKGgGR7+kAPuogmqpaAdLAWgIR0Cmy9MiKR+0dX2UKGgGR7/YWattALRbaAdLBGgIR0Cmy5Vs+FDfdX2UKGgGR7/NAX2ugYgraAdLA2gIR0CmzChoEjgRdX2UKGgGR7/BH4oJAt4BaAdLAmgIR0Cmy+HNgSezdX2UKGgGR7/SaAWi1y/9aAdLBGgIR0CmzHELpiZwdX2UKGgGR7/NnCfpUxVRaAdLA2gIR0Cmy6nUMG5ddX2UKGgGR7/AFX7tRekYaAdLAmgIR0Cmy+3kPtladX2UKGgGR7+9dB0IToMbaAdLAmgIR0CmzH/2kBS2dX2UKGgGR7/JzRQaaTfSaAdLA2gIR0CmzD3dKujidX2UKGgGR7/S3fQ8fV7QaAdLBGgIR0Cmy8YwqRU4dX2UKGgGR7/Q62v0RODbaAdLA2gIR0CmzFHB1s+FdX2UKGgGR7/YyPuG9HtnaAdLBGgIR0CmzAuLaVUudX2UKGgGR7/dDvVmSQo1aAdLBGgIR0CmzJr+glF+dX2UKGgGR7/NrhR64UeuaAdLA2gIR0Cmy98iW3SbdX2UKGgGR7/JQBPsRg7YaAdLA2gIR0CmzGpng5zYdX2UKGgGR7/SrR0EHMUzaAdLA2gIR0CmzCQ2/BWQdX2UKGgGR7/aRODaoMrmaAdLBGgIR0CmzLrV4HHFdX2UKGgGR7/VhFEy+HrRaAdLA2gIR0Cmy/RQzk6tdX2UKGgGR7+aFmFrVOKwaAdLAWgIR0CmzMHrIHTrdX2UKGgGR7/OQL/jsD4haAdLA2gIR0CmzIAFgUlBdX2UKGgGR7/XLE1l5GBnaAdLBGgIR0CmzEOZCv5hdX2UKGgGR7/M5IYm9g4PaAdLA2gIR0CmzA26ClJpdX2UKGgGR7/DNke6qbSaaAdLA2gIR0CmzJl7Uoa2dX2UKGgGR7/ZS4OMERraaAdLBGgIR0CmzOKfFrEcdX2UKGgGR7/SRaouPFNtaAdLA2gIR0CmzCJvYODrdX2UKGgGR7/W16E8JUo8aAdLBWgIR0CmzGrcKw6idX2UKGgGR7/QoDPnjhkzaAdLA2gIR0CmzPquB+WodX2UKGgGR7/bVqveP7vYaAdLBGgIR0CmzLjR+jM3dX2UKGgGR7/SRR/EwWWQaAdLA2gIR0CmzDxUWEbpdX2UKGgGR7+9WjoIOYplaAdLAmgIR0CmzQptSAH3dX2UKGgGR7/X9Cu2Zy+6aAdLBGgIR0CmzInpSrHVdX2UKGgGR7/Bc4YJmdy1aAdLAmgIR0CmzExcu8K5dX2UKGgGR7/YDDCP6sQvaAdLBGgIR0CmzNrZrYXgdX2UKGgGR7+oH5aePJaJaAdLAWgIR0CmzJSmhufmdX2UKGgGR7/bPV/c32mIaAdLBGgIR0CmzSsVUModdX2UKGgGR7+5VZLZi/fwaAdLAmgIR0CmzKK+8Gs4dX2UKGgGR7/JX5nDiwSraAdLA2gIR0CmzPF5OafBdX2UKGgGR7/UQVKwpvxZaAdLBGgIR0CmzG1RDTjOdX2UKGgGR7+/LA57w8W9aAdLAmgIR0CmzTq+BYmtdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}