Model save
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/vit-base-patch16-224
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
- f1
|
13 |
+
model-index:
|
14 |
+
- name: vit-base-oxford-brain-tumor_try_stuff
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Image Classification
|
18 |
+
type: image-classification
|
19 |
+
dataset:
|
20 |
+
name: imagefolder
|
21 |
+
type: imagefolder
|
22 |
+
config: default
|
23 |
+
split: train
|
24 |
+
args: default
|
25 |
+
metrics:
|
26 |
+
- name: Accuracy
|
27 |
+
type: accuracy
|
28 |
+
value: 0.8076923076923077
|
29 |
+
- name: Precision
|
30 |
+
type: precision
|
31 |
+
value: 0.8513986013986015
|
32 |
+
- name: Recall
|
33 |
+
type: recall
|
34 |
+
value: 0.8076923076923077
|
35 |
+
- name: F1
|
36 |
+
type: f1
|
37 |
+
value: 0.7830374753451677
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# vit-base-oxford-brain-tumor_try_stuff
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.5406
|
48 |
+
- Accuracy: 0.8077
|
49 |
+
- Precision: 0.8514
|
50 |
+
- Recall: 0.8077
|
51 |
+
- F1: 0.7830
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 0.0003
|
71 |
+
- train_batch_size: 20
|
72 |
+
- eval_batch_size: 8
|
73 |
+
- seed: 42
|
74 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
+
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 5
|
77 |
+
|
78 |
+
### Training results
|
79 |
+
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
81 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
82 |
+
| 0.6608 | 1.0 | 11 | 0.5499 | 0.8 | 0.8308 | 0.8 | 0.8039 |
|
83 |
+
| 0.6097 | 2.0 | 22 | 0.4836 | 0.88 | 0.8989 | 0.88 | 0.8731 |
|
84 |
+
| 0.5882 | 3.0 | 33 | 0.4191 | 0.88 | 0.8853 | 0.88 | 0.8812 |
|
85 |
+
| 0.5673 | 4.0 | 44 | 0.4871 | 0.84 | 0.8561 | 0.84 | 0.8427 |
|
86 |
+
| 0.5619 | 5.0 | 55 | 0.4079 | 0.92 | 0.92 | 0.92 | 0.92 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.41.2
|
92 |
+
- Pytorch 2.3.0+cu121
|
93 |
+
- Datasets 2.19.2
|
94 |
+
- Tokenizers 0.19.1
|
runs/Jun13_09-54-20_60cbcd28d8fc/events.out.tfevents.1718273508.60cbcd28d8fc.2058.13
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa2d146b324d495c6041789ba43ca74f852f48c5cf55fe711d25b8cdbc3dc246
|
3 |
+
size 551
|