AMfeta99 commited on
Commit
6a50e33
1 Parent(s): 9b50117

Model save

Browse files
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-224
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ - precision
11
+ - recall
12
+ - f1
13
+ model-index:
14
+ - name: vit-base-oxford-brain-tumor_try_stuff
15
+ results:
16
+ - task:
17
+ name: Image Classification
18
+ type: image-classification
19
+ dataset:
20
+ name: imagefolder
21
+ type: imagefolder
22
+ config: default
23
+ split: train
24
+ args: default
25
+ metrics:
26
+ - name: Accuracy
27
+ type: accuracy
28
+ value: 0.8076923076923077
29
+ - name: Precision
30
+ type: precision
31
+ value: 0.8513986013986015
32
+ - name: Recall
33
+ type: recall
34
+ value: 0.8076923076923077
35
+ - name: F1
36
+ type: f1
37
+ value: 0.7830374753451677
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # vit-base-oxford-brain-tumor_try_stuff
44
+
45
+ This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.5406
48
+ - Accuracy: 0.8077
49
+ - Precision: 0.8514
50
+ - Recall: 0.8077
51
+ - F1: 0.7830
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 0.0003
71
+ - train_batch_size: 20
72
+ - eval_batch_size: 8
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 5
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
81
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
82
+ | 0.6608 | 1.0 | 11 | 0.5499 | 0.8 | 0.8308 | 0.8 | 0.8039 |
83
+ | 0.6097 | 2.0 | 22 | 0.4836 | 0.88 | 0.8989 | 0.88 | 0.8731 |
84
+ | 0.5882 | 3.0 | 33 | 0.4191 | 0.88 | 0.8853 | 0.88 | 0.8812 |
85
+ | 0.5673 | 4.0 | 44 | 0.4871 | 0.84 | 0.8561 | 0.84 | 0.8427 |
86
+ | 0.5619 | 5.0 | 55 | 0.4079 | 0.92 | 0.92 | 0.92 | 0.92 |
87
+
88
+
89
+ ### Framework versions
90
+
91
+ - Transformers 4.41.2
92
+ - Pytorch 2.3.0+cu121
93
+ - Datasets 2.19.2
94
+ - Tokenizers 0.19.1
runs/Jun13_09-54-20_60cbcd28d8fc/events.out.tfevents.1718273508.60cbcd28d8fc.2058.13 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa2d146b324d495c6041789ba43ca74f852f48c5cf55fe711d25b8cdbc3dc246
3
+ size 551