--- language: - it tags: - summarization datasets: - ARTeLab/ilpost metrics: - rouge base_model: gsarti/it5-base model-index: - name: summarization_ilpost results: - task: type: summarization name: Summarization dataset: name: medical_questions_pairs type: medical_questions_pairs config: default split: train metrics: - type: rouge value: 12.5087 name: ROUGE-1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTk1NzM4NjEyYjlkOWQ3Yzk0NjNiNDYzZjIwNDZkYWFlYzJlNTA4ZThiNjEzYWQzZWVjYzVmNTYyNjlhMjgzOCIsInZlcnNpb24iOjF9.v6mtEtzUqnUfSBwZu-vXDJmuVGvj4IvSgUFjdWy1RX9ShaC0TtNZJ20W4zjrEZ26Xmk7uqC51hK5ya6kx11WDQ - type: rouge value: 3.6796 name: ROUGE-2 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWQ4YWRmZGVjZTk5YTdjYzZhNzNkZDBmOTRmMzVmODY4OGU4MjI5OTdmZGQ3MTRjNDBmYTBkMTE0MzQ4ZDQ5YSIsInZlcnNpb24iOjF9.Ux7-ReB2i0MLurwxzzOmIi6dGUCUeZNYXgnGX4f8MTVJBMeMFMRFsG3Im1j0-DnpIxuvXETc8J6eZ5PR_5nIAg - type: rouge value: 11.0954 name: ROUGE-L verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjRkZTYyYjRhNTNlMThkZjI3ZmE3MmNlOTFiMmQ0MGRhMTE3ZWM5ODk1OWRkZThiYTFiNDg5MjE2ODVhM2QyNyIsInZlcnNpb24iOjF9.yucLivteb6CxBBMZ1gydBhiWPBzwL2Ga9OS37z0o0tuPSWHjbsZtoVTzrHuJcjH-kwnR_QNA1AWokSf9grs4BQ - type: rouge value: 11.5897 name: ROUGE-LSUM verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDI4ZmYxOWQzOTcyNGIyMWM2NGU4MzM0ZWI1MjRkN2ExNzFmNDFlNzI4ZTI4M2NkYzY5MmQ4MDgxZjhjMDExMyIsInZlcnNpb24iOjF9.riA7X5EfOrBirLWMyOYS5UWReNAm1sjrAPihNuW4lx0IzKdafZ3bUJrH1QNojae5p_XP8AyU8yygZ7TQgN2gBw - type: loss value: 3.0159499645233154 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzhmYzJlMWYwYTM2OGFlNjQ2YjkxYWI1YzNkOTRjMjI0NGQ2ZTNhYjUzN2RhMDQxMjI1NWUyYjgwNTYzN2RkNiIsInZlcnNpb24iOjF9.I_CHEnSn61amBXNSOqBXSkGL09fvRv700bHyC41vNowaBUNtO5vOabRfhYi0IuPmsEI8eh_IEVrwNpbTgdtlAg - type: gen_len value: 18.9961 name: gen_len verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWU5NDBkZDMyNWJjN2NkYWEyNGZjOGY5MDQyOTVmN2I5MTVhMTk0N2I5YjIxZjI4YmY0MmRmZmU3YWIzMGRiYSIsInZlcnNpb24iOjF9.GC80tSpC8-wSuuzGc8wG9iDeSZ6CU1gdczoLiYEFdz-JfCrZa82UGr0EHXTzbaPKjb2Di1MyeH77hygu5BJpCQ --- # summarization_ilpost This model is a fine-tuned version of [gsarti/it5-base](https://huggingface.co/gsarti/it5-base) on IlPost dataset for Abstractive Summarization. It achieves the following results: - Loss: 1.6020 - Rouge1: 33.7802 - Rouge2: 16.2953 - Rougel: 27.4797 - Rougelsum: 30.2273 - Gen Len: 45.3175 ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("ARTeLab/it5-summarization-ilpost") model = T5ForConditionalGeneration.from_pretrained("ARTeLab/it5-summarization-ilpost") ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3