|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from functools import partial |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from timm.models.vision_transformer import Block |
|
from timm.models.layers import to_2tuple |
|
|
|
import numpy as np |
|
|
|
from einops import rearrange |
|
|
|
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): |
|
""" |
|
embed_dim: output dimension for each position |
|
pos: a list of positions to be encoded: size (M,) |
|
out: (M, D) |
|
""" |
|
assert embed_dim % 2 == 0 |
|
omega = np.arange(embed_dim // 2, dtype=np.float32) |
|
omega /= embed_dim / 2. |
|
omega = 1. / 10000**omega |
|
|
|
pos = pos.reshape(-1) |
|
out = np.einsum('m,d->md', pos, omega) |
|
|
|
emb_sin = np.sin(out) |
|
emb_cos = np.cos(out) |
|
|
|
emb = np.concatenate([emb_sin, emb_cos], axis=1) |
|
return emb |
|
|
|
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): |
|
assert embed_dim % 2 == 0 |
|
|
|
|
|
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) |
|
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) |
|
|
|
emb = np.concatenate([emb_h, emb_w], axis=1) |
|
return emb |
|
|
|
def get_3d_sincos_pos_embed(embed_dim, grid_size, cls_token=False): |
|
""" |
|
grid_size: 3d tuple of grid size: t, h, w |
|
return: |
|
pos_embed: L, D |
|
""" |
|
|
|
assert embed_dim % 16 == 0 |
|
|
|
t_size, h_size, w_size = grid_size |
|
|
|
w_embed_dim = embed_dim // 16 * 6 |
|
h_embed_dim = embed_dim // 16 * 6 |
|
t_embed_dim = embed_dim // 16 * 4 |
|
|
|
w_pos_embed = get_1d_sincos_pos_embed_from_grid(w_embed_dim, np.arange(w_size)) |
|
h_pos_embed = get_1d_sincos_pos_embed_from_grid(h_embed_dim, np.arange(h_size)) |
|
t_pos_embed = get_1d_sincos_pos_embed_from_grid(t_embed_dim, np.arange(t_size)) |
|
|
|
w_pos_embed = np.tile(w_pos_embed, (t_size * h_size, 1)) |
|
h_pos_embed = np.tile(np.repeat(h_pos_embed, w_size, axis=0), (t_size, 1)) |
|
t_pos_embed = np.repeat(t_pos_embed, h_size * w_size, axis=0) |
|
|
|
pos_embed = np.concatenate((w_pos_embed, h_pos_embed, t_pos_embed), axis=1) |
|
|
|
if cls_token: |
|
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) |
|
return pos_embed |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" Frames of 2D Images to Patch Embedding |
|
The 3D version of timm.models.vision_transformer.PatchEmbed |
|
""" |
|
def __init__( |
|
self, |
|
img_size=224, |
|
patch_size=16, |
|
num_frames=3, |
|
tubelet_size=1, |
|
in_chans=3, |
|
embed_dim=768, |
|
norm_layer=None, |
|
flatten=True, |
|
bias=True, |
|
): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.num_frames = num_frames |
|
self.tubelet_size = tubelet_size |
|
self.grid_size = (num_frames // tubelet_size, img_size[0] // patch_size[0], img_size[1] // patch_size[1]) |
|
self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2] |
|
self.flatten = flatten |
|
|
|
self.proj = nn.Conv3d(in_chans, embed_dim, |
|
kernel_size=(tubelet_size, patch_size[0], patch_size[1]), |
|
stride=(tubelet_size, patch_size[0], patch_size[1]), bias=bias) |
|
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() |
|
|
|
def forward(self, x): |
|
B, C, T, H, W = x.shape |
|
x = self.proj(x) |
|
if self.flatten: |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
class MaskedAutoencoderViT(nn.Module): |
|
""" Masked Autoencoder with VisionTransformer backbone |
|
""" |
|
def __init__(self, img_size=224, patch_size=16, |
|
num_frames=3, tubelet_size=1, |
|
in_chans=3, embed_dim=1024, depth=24, num_heads=16, |
|
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16, |
|
mlp_ratio=4., norm_layer=nn.LayerNorm, norm_pix_loss=False): |
|
super().__init__() |
|
|
|
|
|
|
|
self.patch_embed = PatchEmbed(img_size, patch_size,num_frames, tubelet_size, in_chans, embed_dim) |
|
num_patches = self.patch_embed.num_patches |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) |
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim), requires_grad=False) |
|
|
|
self.blocks = nn.ModuleList([ |
|
Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer) |
|
for i in range(depth)]) |
|
self.norm = norm_layer(embed_dim) |
|
|
|
|
|
|
|
|
|
self.decoder_embed = nn.Linear(embed_dim, decoder_embed_dim, bias=True) |
|
|
|
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim)) |
|
|
|
self.decoder_pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, decoder_embed_dim), requires_grad=False) |
|
|
|
self.decoder_blocks = nn.ModuleList([ |
|
Block(decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer) |
|
for i in range(decoder_depth)]) |
|
|
|
self.decoder_norm = norm_layer(decoder_embed_dim) |
|
self.decoder_pred = nn.Linear(decoder_embed_dim, tubelet_size * patch_size * patch_size * in_chans, bias=True) |
|
|
|
|
|
self.norm_pix_loss = norm_pix_loss |
|
|
|
self.initialize_weights() |
|
|
|
def initialize_weights(self): |
|
|
|
|
|
pos_embed = get_3d_sincos_pos_embed(self.pos_embed.shape[-1], self.patch_embed.grid_size, cls_token=True) |
|
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) |
|
|
|
decoder_pos_embed = get_3d_sincos_pos_embed(self.decoder_pos_embed.shape[-1], self.patch_embed.grid_size, cls_token=True) |
|
self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0)) |
|
|
|
|
|
w = self.patch_embed.proj.weight.data |
|
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1])) |
|
|
|
|
|
torch.nn.init.normal_(self.cls_token, std=.02) |
|
torch.nn.init.normal_(self.mask_token, std=.02) |
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
|
|
torch.nn.init.xavier_uniform_(m.weight) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def patchify(self, imgs): |
|
""" |
|
imgs: B, C, T, H, W |
|
x: B, L, D |
|
""" |
|
p = self.patch_embed.patch_size[0] |
|
tub = self.patch_embed.tubelet_size |
|
x = rearrange(imgs, 'b c (t tub) (h p) (w q) -> b (t h w) (tub p q c)', tub=tub, p=p, q=p) |
|
|
|
return x |
|
|
|
def unpatchify(self, x): |
|
""" |
|
x: B, L, D |
|
imgs: B, C, T, H, W |
|
""" |
|
p = self.patch_embed.patch_size[0] |
|
num_p = self.patch_embed.img_size[0] // p |
|
tub = self.patch_embed.tubelet_size |
|
imgs = rearrange(x, 'b (t h w) (tub p q c) -> b c (t tub) (h p) (w q)', h=num_p, w=num_p, tub=tub, p=p, q=p) |
|
return imgs |
|
|
|
def random_masking(self, x, mask_ratio): |
|
""" |
|
Perform per-sample random masking by per-sample shuffling. |
|
Per-sample shuffling is done by argsort random noise. |
|
x: [N, L, D], sequence |
|
""" |
|
N, L, D = x.shape |
|
len_keep = int(L * (1 - mask_ratio)) |
|
|
|
noise = torch.rand(N, L, device=x.device) |
|
|
|
|
|
ids_shuffle = torch.argsort(noise, dim=1) |
|
ids_restore = torch.argsort(ids_shuffle, dim=1) |
|
|
|
|
|
ids_keep = ids_shuffle[:, :len_keep] |
|
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D)) |
|
|
|
|
|
mask = torch.ones([N, L], device=x.device) |
|
mask[:, :len_keep] = 0 |
|
|
|
mask = torch.gather(mask, dim=1, index=ids_restore) |
|
|
|
return x_masked, mask, ids_restore |
|
|
|
def forward_encoder(self, x, mask_ratio): |
|
|
|
x = self.patch_embed(x) |
|
|
|
|
|
x = x + self.pos_embed[:, 1:, :] |
|
|
|
|
|
x, mask, ids_restore = self.random_masking(x, mask_ratio) |
|
|
|
|
|
cls_token = self.cls_token + self.pos_embed[:, :1, :] |
|
cls_tokens = cls_token.expand(x.shape[0], -1, -1) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
|
|
|
|
for blk in self.blocks: |
|
x = blk(x) |
|
x = self.norm(x) |
|
|
|
return x, mask, ids_restore |
|
|
|
def forward_decoder(self, x, ids_restore): |
|
|
|
x = self.decoder_embed(x) |
|
|
|
|
|
mask_tokens = self.mask_token.repeat(x.shape[0], ids_restore.shape[1] + 1 - x.shape[1], 1) |
|
x_ = torch.cat([x[:, 1:, :], mask_tokens], dim=1) |
|
x_ = torch.gather(x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2])) |
|
x = torch.cat([x[:, :1, :], x_], dim=1) |
|
|
|
|
|
x = x + self.decoder_pos_embed |
|
|
|
|
|
for blk in self.decoder_blocks: |
|
x = blk(x) |
|
x = self.decoder_norm(x) |
|
|
|
|
|
x = self.decoder_pred(x) |
|
|
|
|
|
x = x[:, 1:, :] |
|
|
|
return x |
|
|
|
def forward_loss(self, imgs, pred, mask): |
|
""" |
|
imgs: B, C, T, H, W |
|
target: B, L, D |
|
pred: B, L, D |
|
mask: B, L. 0 is keep, 1 is remove, |
|
""" |
|
target = self.patchify(imgs) |
|
if self.norm_pix_loss: |
|
mean = target.mean(dim=-1, keepdim=True) |
|
var = target.var(dim=-1, keepdim=True) |
|
target = (target - mean) / (var + 1.e-6)**.5 |
|
|
|
loss = (pred - target) ** 2 |
|
loss = loss.mean(dim=-1) |
|
|
|
loss = (loss * mask).sum() / mask.sum() |
|
return loss |
|
|
|
def forward(self, imgs, mask_ratio=0.75): |
|
latent, mask, ids_restore = self.forward_encoder(imgs, mask_ratio) |
|
pred = self.forward_decoder(latent, ids_restore) |
|
loss = self.forward_loss(imgs, pred, mask) |
|
return loss, pred, mask |
|
|