File size: 5,955 Bytes
2bceed7
15f7c17
2bceed7
15f7c17
 
 
2bceed7
 
21e989b
 
80a8ba2
1f4996b
 
401123f
1f4996b
401123f
1f4996b
 
401123f
 
15f7c17
80a8ba2
 
 
 
2bceed7
21e989b
 
 
 
2bceed7
15f7c17
 
 
 
2bceed7
21e989b
15f7c17
 
 
 
4ce9189
15f7c17
 
 
 
 
 
 
21e989b
15f7c17
 
 
 
 
 
2bceed7
21e989b
15f7c17
 
 
 
 
 
2bceed7
21e989b
 
 
2bceed7
21e989b
2bceed7
15f7c17
 
2bceed7
21e989b
 
2bceed7
21e989b
2bceed7
21e989b
 
2bceed7
15f7c17
2bceed7
36cbd25
 
 
 
 
 
 
21e989b
 
 
80ee452
e3a0d3f
80ee452
21e989b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
---
license: gemma
library_name: transformers
pipeline_tag: text-generation
tags:
- conversational
---

# [EZO model card]
![image/png](https://cdn-uploads.huggingface.co/production/uploads/657e900beaad53ff67ba84db/0OYFqT8kACowa9bY1EZF6.png)

## [Model Information]
This model is based on Gemma-2-9B-it, specially tuned to enhance its performance in Humanities-related tasks. While maintaining its strong foundation in Japanese language processing, it has been optimized to excel in areas such as literature, philosophy, history, and cultural studies. This focused approach allows the model to provide deeper insights and more nuanced responses in Humanities fields, while still being capable of handling a wide range of global inquiries.

Gemma-2-9B-itをベースとして、人文科学(Humanities)関連タスクでの性能向上に特化したチューニングを施したモデルです。日本語処理の強固な基盤を維持しつつ、文学、哲学、歴史、文化研究などの分野で卓越した能力を発揮するよう最適化されています。この焦点を絞ったアプローチにより、人文科学分野でより深い洞察と繊細な応答を提供しながら、同時に幅広いグローバルな問い合わせにも対応できる能力を備えています。

### [Benchmark Results]
![image/png](https://cdn-uploads.huggingface.co/production/uploads/657e900beaad53ff67ba84db/XyPo_1rVa_ufmV5SeLepQ.png)


**Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent/verify/huggingface?returnModelRepoId=google/gemma-2-9b-it)

This model is based on Gemma-2-9B-it and is subject to the Gemma Terms of Use. For detailed information, please refer to the official Gemma license page.

このモデルはGemma-2-9B-itをベースにしており、Gemmaの利用規約に従います。詳細については、Gemmaの公式ライセンスページをご参照ください。

### [Usage]
Here are some code snippets to quickly get started with the model. First, run:
`pip install -U transformers`
Then, copy the snippet from the relevant section for your use case.

以下に、モデルの実行を素早く開始するためのコードスニペットをいくつか紹介します。
まず、
`pip install -U transformers`
を実行し、使用例に関連するセクションのスニペットをコピーしてください。

### [Chat Template]
```py
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
model_id = "HODACHI/EZO-Humanities-9B-gemma-2-it"
dtype = torch.bfloat16
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="cuda",
    torch_dtype=dtype,)
chat = [
    { "role": "user", "content": "How do different stages of life influence our understanding of time and death? Please provide examples." },
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150)
print(tokenizer.decode(outputs[0]))
```

### [Template]
```
<bos><start_of_turn>user
Write a hello world program<end_of_turn>
<start_of_turn>model
XXXXXX<end_of_turn><eos>
```

### [Model Data]
#### Training Dataset]
We extracted high-quality data from Japanese Wikipedia and FineWeb to create instruction data. Our innovative training approach allows for performance improvements across various languages and domains, making the model suitable for global use despite its focus on Japanese data.

日本語のWikiデータおよび、FineWebから良質なデータのみを抽出し、Instructionデータを作成しました。このモデルでは日本語に特化させていますが、世界中のどんなユースケースでも利用可能なアプローチです。

https://huggingface.co/datasets/legacy-datasets/wikipedia
https://huggingface.co/datasets/HuggingFaceFW/fineweb

#### Data Preprocessing
We used a plain instruction tuning method to train the model on exemplary responses. This approach enhances the model's ability to understand and generate high-quality responses across various languages and contexts.

プレインストラクトチューニング手法を用いて、模範的回答を学習させました。この手法により、モデルは様々な言語やコンテキストにおいて高品質な応答を理解し生成する能力が向上しています。

#### Implementation Information
[Pre-Instruction Training] 

https://huggingface.co/instruction-pretrain/instruction-synthesizer

### [Disclaimer]
このモデルは研究開発のみを目的として提供されるものであり、実験的なプロトタイプとみなされるべきモデルです。
商業的な使用やミッションクリティカルな環境への配備を意図したものではありません。
本モデルの使用は、使用者の責任において行われるものとし、その性能および結果は保証されません。
Axcxept株式会社は、直接的、間接的、特別、偶発的、結果的な損害、または本モデルの使用から生じるいかなる損失に対しても、得られた結果にかかわらず、一切の責任を負いません。
利用者は、本モデルの使用に伴うリスクを十分に理解し、自己の判断で使用するものとします。

### [Hardware]
A100 × 4(Running in 32h)

### [謝辞]
本ベースモデルを開発してくださったGoogle社ならびに当該チームの開発者の方々、また自動評価の手法を提供してくださった多数の方々に感謝と尊敬の意を表します。

### [We are.]
[![Axcxept logo](https://cdn-uploads.huggingface.co/production/uploads/657e900beaad53ff67ba84db/8OKW86U986ywttvL2RcbG.png)](https://axcxept.com)