---
license: mit
datasets:
- OEvortex/vortex-mini
tags:
- generated_from_trainer
base_model: ahxt/LiteLlama-460M-1T
model-index:
- name: qlora-out
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
adapter: qlora
additional_layers: 2
base_model: ahxt/LiteLlama-460M-1T
bf16: false
dataset_prepared_path: null
datasets:
- path: OEvortex/vortex-mini
type: alpaca
debug: null
deepspeed: null
early_stopping_patience: null
embedding_size: 256
evals_per_epoch: null
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
group_by_length: false
hidden_size: 512
is_llama_derived_model: false
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules: null
lr_scheduler: cosine
max_steps: 20
micro_batch_size: 1
mlflow_experiment_name: colab-example
model_type: LlamaForCausalLM
num_epochs: 4
optimizer: paged_adamw_32bit
output_dir: ./qlora-out
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
saves_per_epoch: null
sequence_len: 1096
special_tokens: null
strict: false
tf32: false
tokenizer_type: GPT2Tokenizer
train_on_inputs: false
val_set_size: 0.05
wandb_entity: null
wandb_log_model: null
wandb_name: null
wandb_project: null
wandb_watch: null
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
# qlora-out
This model is a fine-tuned version of [ahxt/LiteLlama-460M-1T](https://huggingface.co/ahxt/LiteLlama-460M-1T) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: nan
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.4442 | 0.0 | 20 | nan |
### Framework versions
- PEFT 0.8.2
- Transformers 4.38.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.16.1
- Tokenizers 0.15.0