import torch import numpy as np from torch import nn from torch.nn import functional as F from einops.layers.torch import Rearrange from performer_pytorch import Performer class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout): super().__init__() self.net = nn.Sequential( nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class FAVORiserGatingUnit(nn.Module): def __init__(self,d_model,d_ffn,dropout): super().__init__() self.proj = nn.Linear(d_model,d_model) self.fav = Performer( dim = d_model, heads = 8, depth = 1, dim_head=64, ff_dropout = dropout, attn_dropout = dropout ) def forward(self, x): u, v = x, x u = self.proj(u) v = self.fav(v) out = u * v return out class FAVORiserBlock(nn.Module): def __init__(self, d_model, d_ffn,dropout): super().__init__() self.norm = nn.LayerNorm(d_model) self.fgu = FAVORiserGatingUnit(d_model,d_ffn,dropout) self.ffn = FeedForward(d_model,d_ffn,dropout) def forward(self, x): residual = x x = self.norm(x) x = self.fgu(x) x = x + residual residual = x x = self.norm(x) x = self.ffn(x) out = x + residual return out class FAVORiser(nn.Module): def __init__(self, d_model, d_ffn, num_layers,dropout): super().__init__() self.model = nn.Sequential( *[FAVORiserBlock(d_model,d_ffn,dropout) for _ in range(num_layers)] ) def forward(self, x): return self.model(x)