Commit
·
536cee9
1
Parent(s):
791ba5d
init
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 144.89 +/- 53.30
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe2f1cda830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe2f1cda8c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe2f1cda950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe2f1cda9e0>", "_build": "<function ActorCriticPolicy._build at 0x7fe2f1cdaa70>", "forward": "<function ActorCriticPolicy.forward at 0x7fe2f1cdab00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe2f1cdab90>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe2f1cdac20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe2f1cdacb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe2f1cdad40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe2f1cdadd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe2f1d2b570>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653061219.096969, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAprqfPt6Xsz2TH8i94OZQvob5hz3aGRa8AAAAAAAAAABNiS4+zxdxPtzyq7yvXyq+8bpkPB1brToAAAAAAAAAAM0CZLwp6BO6VY2gu7M+izXL6ci5BGC4OgAAgD8AAIA/Cj+RvsgItDugdhq6r8DANxzvVL0aqTA5AACAPwAAgD/Akf+9d91vPyKlNb6CrYW+1eYAvUtskDwAAAAAAAAAAFNPOb6flYg8X0y0OzZ8Jrqh2xK+WkVIOQAAgD8AAIA/gOmXPmQ/Gj4bNFe8Jktlvg1KAL4WJdC8AAAAAAAAAADNrbg+9PAzPxaw/jyxpoG+0x9oPbJXf70AAAAAAAAAAINRnD7/2oo/uhpnvDDDoL7P0ek+hhOXOwAAAAAAAAAAzYx4vOzZ07ke56q6on4QtavNRrtSEsY5AACAPwAAgD+tf0K+HzTeu+FtNjqQdMc3AVZtPcBLXLkAAIA/AACAP5oRNb1jl1c/Ojl1ukqKor5wbM08jTWOPQAAAAAAAAAAkJSUPmzyj7te/C070ER5uOr3BL2FaHa1AACAPwAAgD9GRKQ+Jz8FvT0tiDsW1gO6N6Q4vqYWnroAAAAAAACAPyB2rL6R9dk9y8ZBvntNML7a4kO+fI4SvgAAAAAAAAAAZlfFPRt+RD/9YM08Q4+xvpfgHzzO9t28AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpMfvbXpTYECUhpRSlIwBbJRN6AOMAXSUR0CBYnLdvbXZdX2UKGgGaAloD0MIsHCS5o9tU0CUhpRSlGgVTegDaBZHQIFkNAzHjp91fZQoaAZoCWgPQwhZiA6BIxU4QJSGlFKUaBVLyWgWR0CBZjG3F1jidX2UKGgGaAloD0MIYAK37ubqX0CUhpRSlGgVTegDaBZHQIFmTguRLbp1fZQoaAZoCWgPQwj+7h01JsphQJSGlFKUaBVN6ANoFkdAgWmW1lXii3V9lChoBmgJaA9DCO9YbJOKIllAlIaUUpRoFU3oA2gWR0CBcO+Jxeb/dX2UKGgGaAloD0MIV3kCYadUVECUhpRSlGgVTegDaBZHQIF65RVIZqF1fZQoaAZoCWgPQwjzPo7myGoPQJSGlFKUaBVNEQFoFkdAgXtD9XLeRHV9lChoBmgJaA9DCNGWcymuyV5AlIaUUpRoFU3oA2gWR0CBfnsWO6uodX2UKGgGaAloD0MIV8wIbw+KNECUhpRSlGgVTQ8BaBZHQIGD+JJoTPB1fZQoaAZoCWgPQwg42JsYEjFgQJSGlFKUaBVN6ANoFkdAgYqvBi1Aq3V9lChoBmgJaA9DCBGMg0vHGldAlIaUUpRoFU3oA2gWR0CBjWx0MgEEdX2UKGgGaAloD0MI3qzB+6oiXUCUhpRSlGgVTegDaBZHQIGRDP8hs691fZQoaAZoCWgPQwgDzlKynG5dQJSGlFKUaBVN6ANoFkdAgZlptBOYY3V9lChoBmgJaA9DCCwrTUpB1yxAlIaUUpRoFUv0aBZHQIGfCxxDLKV1fZQoaAZoCWgPQwjIQnQIHLVIQJSGlFKUaBVN6ANoFkdAgZ+1RDTjN3V9lChoBmgJaA9DCOaUgJiEPULAlIaUUpRoFU0MAWgWR0CBqqy8BdUsdX2UKGgGaAloD0MIYqOs30xMCkCUhpRSlGgVTR8BaBZHQIGwy+evpyJ1fZQoaAZoCWgPQwgoRMAhVAtYQJSGlFKUaBVN6ANoFkdAgdoduYQarHV9lChoBmgJaA9DCEd0z7pGhzlAlIaUUpRoFUvfaBZHQIHcWqT8pCt1fZQoaAZoCWgPQwiRmnYxzdwzwJSGlFKUaBVNRgFoFkdAgeLSSV4X43V9lChoBmgJaA9DCE31ZP7RZV5AlIaUUpRoFU3oA2gWR0CB6/V7Qb++dX2UKGgGaAloD0MIGT230JVvYECUhpRSlGgVTegDaBZHQIH8C+HrQgN1fZQoaAZoCWgPQwhAMEeP33sJwJSGlFKUaBVNFQFoFkdAgf/RI8QqZ3V9lChoBmgJaA9DCA+dnndjuFpAlIaUUpRoFU3oA2gWR0CB//x+8XendX2UKGgGaAloD0MIzEV8J2acYUCUhpRSlGgVTegDaBZHQIIAGKQ7tAt1fZQoaAZoCWgPQwiqnPaUHOJhQJSGlFKUaBVN6ANoFkdAggOHmaH9FXV9lChoBmgJaA9DCBR6/Ul8ejNAlIaUUpRoFU3oA2gWR0CCCxrWRRuTdX2UKGgGaAloD0MIZoLhXMMaRkCUhpRSlGgVTegDaBZHQIIVZeu3c591fZQoaAZoCWgPQwgDQBU3bthbQJSGlFKUaBVN6ANoFkdAghXI1DSgG3V9lChoBmgJaA9DCLCNeLKbxl1AlIaUUpRoFU3oA2gWR0CCGOQ8wHqvdX2UKGgGaAloD0MIpGyRtBviZUCUhpRSlGgVTegDaBZHQIIlTaVUuL91fZQoaAZoCWgPQwiBeF2/4NRpQJSGlFKUaBVNOgFoFkdAgiVwJXyRS3V9lChoBmgJaA9DCOqWHeIfblPAlIaUUpRoFU0eAWgWR0CCJZHo5ggHdX2UKGgGaAloD0MIbhPulXkvQcCUhpRSlGgVTSoBaBZHQIIuZOgxrSF1fZQoaAZoCWgPQwgCt+7mqS4pwJSGlFKUaBVNCwFoFkdAgjh9Zq20A3V9lChoBmgJaA9DCOKQDaSLtVVAlIaUUpRoFU3oA2gWR0CCPJd8iOebdX2UKGgGaAloD0MInfF9cak6SMCUhpRSlGgVS/ZoFkdAgkO9Fvybx3V9lChoBmgJaA9DCIKLFTWYSkpAlIaUUpRoFU3oA2gWR0CCSVcbiqACdX2UKGgGaAloD0MIAb9GkqCzacCUhpRSlGgVTdgBaBZHQIJPNLFn7Hh1fZQoaAZoCWgPQwhyh01k5tdhQJSGlFKUaBVN6ANoFkdAglBf642CNHV9lChoBmgJaA9DCPmFV5I8M1RAlIaUUpRoFU3oA2gWR0CCVjffGdZrdX2UKGgGaAloD0MI65Cb4QZcYkCUhpRSlGgVTegDaBZHQIKDUDdP+GZ1fZQoaAZoCWgPQwhpN/qYD+1fQJSGlFKUaBVN6ANoFkdAgozOnl4keXV9lChoBmgJaA9DCLd546Qw6FhAlIaUUpRoFU3oA2gWR0CCndTuOS4fdX2UKGgGaAloD0MILj2a6snkWUCUhpRSlGgVTegDaBZHQIKiAlhPTG51fZQoaAZoCWgPQwi6E+y/zrhXQJSGlFKUaBVN6ANoFkdAgqJThYNiIHV9lChoBmgJaA9DCNdMvtnm5k3AlIaUUpRoFUv0aBZHQIKklRvWH1x1fZQoaAZoCWgPQwhda+9TVejxP5SGlFKUaBVNFQFoFkdAgrNI5xR2sHV9lChoBmgJaA9DCJPfopMlFGBAlIaUUpRoFU3oA2gWR0CCutf9gnc+dX2UKGgGaAloD0MINszQeCL7UUCUhpRSlGgVTegDaBZHQILN3fGdZq51fZQoaAZoCWgPQwi2v7M9er9JQJSGlFKUaBVN6ANoFkdAgs4Ht4RmLHV9lChoBmgJaA9DCIszhjlBJVlAlIaUUpRoFU3oA2gWR0CC2G+1SflIdX2UKGgGaAloD0MIu31WmSk1RECUhpRSlGgVTTMBaBZHQILdwTdtVJd1fZQoaAZoCWgPQwjOiT20j09YQJSGlFKUaBVN6ANoFkdAguNAjyFwk3V9lChoBmgJaA9DCAlU/yASvmBAlIaUUpRoFU3oA2gWR0CC51EQXhwVdX2UKGgGaAloD0MICB9KtOSgVkCUhpRSlGgVTegDaBZHQILuWFYdQwd1fZQoaAZoCWgPQwgZcJaS5WZUQJSGlFKUaBVN6ANoFkdAgvN3FDOTq3V9lChoBmgJaA9DCEYHJGHfFldAlIaUUpRoFU3oA2gWR0CC+OQWepXIdX2UKGgGaAloD0MI4ue/B6+fWECUhpRSlGgVTegDaBZHQIL588FINEx1fZQoaAZoCWgPQwhWKqio+ltfQJSGlFKUaBVN6ANoFkdAgv8AJ9iMHnV9lChoBmgJaA9DCAXFjzF3vTvAlIaUUpRoFUvPaBZHQIL/9ZgXuVp1fZQoaAZoCWgPQwiad5yiI4tcQJSGlFKUaBVN6ANoFkdAg0RLU9ZA6nV9lChoBmgJaA9DCBRdF35weV1AlIaUUpRoFU3oA2gWR0CDSIhwl0HRdX2UKGgGaAloD0MIy/YhbzkxYECUhpRSlGgVTegDaBZHQINI1PUKArh1fZQoaAZoCWgPQwihR4yeW4ZbQJSGlFKUaBVN6ANoFkdAg0szUZvUBnV9lChoBmgJaA9DCKfria4LvFtAlIaUUpRoFU3oA2gWR0CDYSWszVMFdX2UKGgGaAloD0MIvw6cM6KQWUCUhpRSlGgVTegDaBZHQIN0c9lmOEN1fZQoaAZoCWgPQwi1iCgm72ZhQJSGlFKUaBVN6ANoFkdAg3Sanzg/DHV9lChoBmgJaA9DCNDTgEHSXl5AlIaUUpRoFU3oA2gWR0CDf23n6l+FdX2UKGgGaAloD0MISzlf7D3WZUCUhpRSlGgVTegDaBZHQIOFHLeQ+2V1fZQoaAZoCWgPQwjDR8SUSHxcQJSGlFKUaBVN6ANoFkdAg4qYt6HCXXV9lChoBmgJaA9DCL2MYrmlo0jAlIaUUpRoFU0xAWgWR0CDjAQnx8UmdX2UKGgGaAloD0MIxa7t7ZbTXUCUhpRSlGgVTegDaBZHQIOVr7XQMQV1fZQoaAZoCWgPQwim7souGBBAwJSGlFKUaBVNEwFoFkdAg5jfgiu+y3V9lChoBmgJaA9DCBNGs7J9tlpAlIaUUpRoFU3oA2gWR0CDmsCfYjB3dX2UKGgGaAloD0MIK/aX3ZNAVkCUhpRSlGgVTegDaBZHQIOfqqS5iEx1fZQoaAZoCWgPQwgpzHucaf5QQJSGlFKUaBVN6ANoFkdAg6CdHMEA53V9lChoBmgJaA9DCBe7fVaZKSPAlIaUUpRoFU16AWgWR0CDpAydFvycdX2UKGgGaAloD0MI/Wt55XoCX0CUhpRSlGgVTegDaBZHQIOlFUOuq3p1fZQoaAZoCWgPQwg7w9SWOmpYQJSGlFKUaBVN6ANoFkdAg6XryMDOknV9lChoBmgJaA9DCDZy3ZTyyhhAlIaUUpRoFU0IAWgWR0CD2mEM9bHIdX2UKGgGaAloD0MIuHaiJCT+VECUhpRSlGgVTegDaBZHQIPnIumJm/Z1fZQoaAZoCWgPQwiiCKnb2ZVVQJSGlFKUaBVN6ANoFkdAg+rrZBcAznV9lChoBmgJaA9DCE3aVN0ja1tAlIaUUpRoFU3oA2gWR0CD6y3NLUTddX2UKGgGaAloD0MIHXIz3IBxUECUhpRSlGgVTegDaBZHQIPtPJkoWpJ1fZQoaAZoCWgPQwgMeJlho/Q4QJSGlFKUaBVNHAFoFkdAhAyZAhStNnV9lChoBmgJaA9DCEURUrezTyRAlIaUUpRoFU0LAWgWR0CEDq9XcQAddX2UKGgGaAloD0MIN8XjolrCYECUhpRSlGgVTegDaBZHQIQhZB3Roh91fZQoaAZoCWgPQwihoupXOj1iQJSGlFKUaBVN6ANoFkdAhCeshX8wYnV9lChoBmgJaA9DCMXKaOTzEVhAlIaUUpRoFU3oA2gWR0CELecJ+lTFdX2UKGgGaAloD0MIVWr2QCumR0CUhpRSlGgVTegDaBZHQIQvaESM98t1fZQoaAZoCWgPQwiPU3Qkl+8zwJSGlFKUaBVNHwFoFkdAhDdAhbGFSXV9lChoBmgJaA9DCNXo1QClTVpAlIaUUpRoFU3oA2gWR0CEOfN4Z/CqdX2UKGgGaAloD0MIED//PXjiXkCUhpRSlGgVTegDaBZHQIQ9ZBLPD511fZQoaAZoCWgPQwg0ETY8vblcQJSGlFKUaBVN6ANoFkdAhET0nPVurXV9lChoBmgJaA9DCHAnEeFfkE5AlIaUUpRoFU3oA2gWR0CERhVurIYFdX2UKGgGaAloD0MIJ2iTw6cZYUCUhpRSlGgVTegDaBZHQIRKKy2QXAN1fZQoaAZoCWgPQwhxHeOKixdVQJSGlFKUaBVN6ANoFkdAhEtYcNpdr3V9lChoBmgJaA9DCL75DRMNll5AlIaUUpRoFU3oA2gWR0CETEDujRD1dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1cf45242cb623535cecf7603eb669390608990a98614609431e0c2dc4904a99
|
3 |
+
size 144147
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe2f1cda830>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe2f1cda8c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe2f1cda950>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe2f1cda9e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe2f1cdaa70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe2f1cdab00>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe2f1cdab90>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe2f1cdac20>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe2f1cdacb0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe2f1cdad40>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe2f1cdadd0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fe2f1d2b570>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1653061219.096969,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAprqfPt6Xsz2TH8i94OZQvob5hz3aGRa8AAAAAAAAAABNiS4+zxdxPtzyq7yvXyq+8bpkPB1brToAAAAAAAAAAM0CZLwp6BO6VY2gu7M+izXL6ci5BGC4OgAAgD8AAIA/Cj+RvsgItDugdhq6r8DANxzvVL0aqTA5AACAPwAAgD/Akf+9d91vPyKlNb6CrYW+1eYAvUtskDwAAAAAAAAAAFNPOb6flYg8X0y0OzZ8Jrqh2xK+WkVIOQAAgD8AAIA/gOmXPmQ/Gj4bNFe8Jktlvg1KAL4WJdC8AAAAAAAAAADNrbg+9PAzPxaw/jyxpoG+0x9oPbJXf70AAAAAAAAAAINRnD7/2oo/uhpnvDDDoL7P0ek+hhOXOwAAAAAAAAAAzYx4vOzZ07ke56q6on4QtavNRrtSEsY5AACAPwAAgD+tf0K+HzTeu+FtNjqQdMc3AVZtPcBLXLkAAIA/AACAP5oRNb1jl1c/Ojl1ukqKor5wbM08jTWOPQAAAAAAAAAAkJSUPmzyj7te/C070ER5uOr3BL2FaHa1AACAPwAAgD9GRKQ+Jz8FvT0tiDsW1gO6N6Q4vqYWnroAAAAAAACAPyB2rL6R9dk9y8ZBvntNML7a4kO+fI4SvgAAAAAAAAAAZlfFPRt+RD/9YM08Q4+xvpfgHzzO9t28AAAAAAAAAACUdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpMfvbXpTYECUhpRSlIwBbJRN6AOMAXSUR0CBYnLdvbXZdX2UKGgGaAloD0MIsHCS5o9tU0CUhpRSlGgVTegDaBZHQIFkNAzHjp91fZQoaAZoCWgPQwhZiA6BIxU4QJSGlFKUaBVLyWgWR0CBZjG3F1jidX2UKGgGaAloD0MIYAK37ubqX0CUhpRSlGgVTegDaBZHQIFmTguRLbp1fZQoaAZoCWgPQwj+7h01JsphQJSGlFKUaBVN6ANoFkdAgWmW1lXii3V9lChoBmgJaA9DCO9YbJOKIllAlIaUUpRoFU3oA2gWR0CBcO+Jxeb/dX2UKGgGaAloD0MIV3kCYadUVECUhpRSlGgVTegDaBZHQIF65RVIZqF1fZQoaAZoCWgPQwjzPo7myGoPQJSGlFKUaBVNEQFoFkdAgXtD9XLeRHV9lChoBmgJaA9DCNGWcymuyV5AlIaUUpRoFU3oA2gWR0CBfnsWO6uodX2UKGgGaAloD0MIV8wIbw+KNECUhpRSlGgVTQ8BaBZHQIGD+JJoTPB1fZQoaAZoCWgPQwg42JsYEjFgQJSGlFKUaBVN6ANoFkdAgYqvBi1Aq3V9lChoBmgJaA9DCBGMg0vHGldAlIaUUpRoFU3oA2gWR0CBjWx0MgEEdX2UKGgGaAloD0MI3qzB+6oiXUCUhpRSlGgVTegDaBZHQIGRDP8hs691fZQoaAZoCWgPQwgDzlKynG5dQJSGlFKUaBVN6ANoFkdAgZlptBOYY3V9lChoBmgJaA9DCCwrTUpB1yxAlIaUUpRoFUv0aBZHQIGfCxxDLKV1fZQoaAZoCWgPQwjIQnQIHLVIQJSGlFKUaBVN6ANoFkdAgZ+1RDTjN3V9lChoBmgJaA9DCOaUgJiEPULAlIaUUpRoFU0MAWgWR0CBqqy8BdUsdX2UKGgGaAloD0MIYqOs30xMCkCUhpRSlGgVTR8BaBZHQIGwy+evpyJ1fZQoaAZoCWgPQwgoRMAhVAtYQJSGlFKUaBVN6ANoFkdAgdoduYQarHV9lChoBmgJaA9DCEd0z7pGhzlAlIaUUpRoFUvfaBZHQIHcWqT8pCt1fZQoaAZoCWgPQwiRmnYxzdwzwJSGlFKUaBVNRgFoFkdAgeLSSV4X43V9lChoBmgJaA9DCE31ZP7RZV5AlIaUUpRoFU3oA2gWR0CB6/V7Qb++dX2UKGgGaAloD0MIGT230JVvYECUhpRSlGgVTegDaBZHQIH8C+HrQgN1fZQoaAZoCWgPQwhAMEeP33sJwJSGlFKUaBVNFQFoFkdAgf/RI8QqZ3V9lChoBmgJaA9DCA+dnndjuFpAlIaUUpRoFU3oA2gWR0CB//x+8XendX2UKGgGaAloD0MIzEV8J2acYUCUhpRSlGgVTegDaBZHQIIAGKQ7tAt1fZQoaAZoCWgPQwiqnPaUHOJhQJSGlFKUaBVN6ANoFkdAggOHmaH9FXV9lChoBmgJaA9DCBR6/Ul8ejNAlIaUUpRoFU3oA2gWR0CCCxrWRRuTdX2UKGgGaAloD0MIZoLhXMMaRkCUhpRSlGgVTegDaBZHQIIVZeu3c591fZQoaAZoCWgPQwgDQBU3bthbQJSGlFKUaBVN6ANoFkdAghXI1DSgG3V9lChoBmgJaA9DCLCNeLKbxl1AlIaUUpRoFU3oA2gWR0CCGOQ8wHqvdX2UKGgGaAloD0MIpGyRtBviZUCUhpRSlGgVTegDaBZHQIIlTaVUuL91fZQoaAZoCWgPQwiBeF2/4NRpQJSGlFKUaBVNOgFoFkdAgiVwJXyRS3V9lChoBmgJaA9DCOqWHeIfblPAlIaUUpRoFU0eAWgWR0CCJZHo5ggHdX2UKGgGaAloD0MIbhPulXkvQcCUhpRSlGgVTSoBaBZHQIIuZOgxrSF1fZQoaAZoCWgPQwgCt+7mqS4pwJSGlFKUaBVNCwFoFkdAgjh9Zq20A3V9lChoBmgJaA9DCOKQDaSLtVVAlIaUUpRoFU3oA2gWR0CCPJd8iOebdX2UKGgGaAloD0MInfF9cak6SMCUhpRSlGgVS/ZoFkdAgkO9Fvybx3V9lChoBmgJaA9DCIKLFTWYSkpAlIaUUpRoFU3oA2gWR0CCSVcbiqACdX2UKGgGaAloD0MIAb9GkqCzacCUhpRSlGgVTdgBaBZHQIJPNLFn7Hh1fZQoaAZoCWgPQwhyh01k5tdhQJSGlFKUaBVN6ANoFkdAglBf642CNHV9lChoBmgJaA9DCPmFV5I8M1RAlIaUUpRoFU3oA2gWR0CCVjffGdZrdX2UKGgGaAloD0MI65Cb4QZcYkCUhpRSlGgVTegDaBZHQIKDUDdP+GZ1fZQoaAZoCWgPQwhpN/qYD+1fQJSGlFKUaBVN6ANoFkdAgozOnl4keXV9lChoBmgJaA9DCLd546Qw6FhAlIaUUpRoFU3oA2gWR0CCndTuOS4fdX2UKGgGaAloD0MILj2a6snkWUCUhpRSlGgVTegDaBZHQIKiAlhPTG51fZQoaAZoCWgPQwi6E+y/zrhXQJSGlFKUaBVN6ANoFkdAgqJThYNiIHV9lChoBmgJaA9DCNdMvtnm5k3AlIaUUpRoFUv0aBZHQIKklRvWH1x1fZQoaAZoCWgPQwhda+9TVejxP5SGlFKUaBVNFQFoFkdAgrNI5xR2sHV9lChoBmgJaA9DCJPfopMlFGBAlIaUUpRoFU3oA2gWR0CCutf9gnc+dX2UKGgGaAloD0MINszQeCL7UUCUhpRSlGgVTegDaBZHQILN3fGdZq51fZQoaAZoCWgPQwi2v7M9er9JQJSGlFKUaBVN6ANoFkdAgs4Ht4RmLHV9lChoBmgJaA9DCIszhjlBJVlAlIaUUpRoFU3oA2gWR0CC2G+1SflIdX2UKGgGaAloD0MIu31WmSk1RECUhpRSlGgVTTMBaBZHQILdwTdtVJd1fZQoaAZoCWgPQwjOiT20j09YQJSGlFKUaBVN6ANoFkdAguNAjyFwk3V9lChoBmgJaA9DCAlU/yASvmBAlIaUUpRoFU3oA2gWR0CC51EQXhwVdX2UKGgGaAloD0MICB9KtOSgVkCUhpRSlGgVTegDaBZHQILuWFYdQwd1fZQoaAZoCWgPQwgZcJaS5WZUQJSGlFKUaBVN6ANoFkdAgvN3FDOTq3V9lChoBmgJaA9DCEYHJGHfFldAlIaUUpRoFU3oA2gWR0CC+OQWepXIdX2UKGgGaAloD0MI4ue/B6+fWECUhpRSlGgVTegDaBZHQIL588FINEx1fZQoaAZoCWgPQwhWKqio+ltfQJSGlFKUaBVN6ANoFkdAgv8AJ9iMHnV9lChoBmgJaA9DCAXFjzF3vTvAlIaUUpRoFUvPaBZHQIL/9ZgXuVp1fZQoaAZoCWgPQwiad5yiI4tcQJSGlFKUaBVN6ANoFkdAg0RLU9ZA6nV9lChoBmgJaA9DCBRdF35weV1AlIaUUpRoFU3oA2gWR0CDSIhwl0HRdX2UKGgGaAloD0MIy/YhbzkxYECUhpRSlGgVTegDaBZHQINI1PUKArh1fZQoaAZoCWgPQwihR4yeW4ZbQJSGlFKUaBVN6ANoFkdAg0szUZvUBnV9lChoBmgJaA9DCKfria4LvFtAlIaUUpRoFU3oA2gWR0CDYSWszVMFdX2UKGgGaAloD0MIvw6cM6KQWUCUhpRSlGgVTegDaBZHQIN0c9lmOEN1fZQoaAZoCWgPQwi1iCgm72ZhQJSGlFKUaBVN6ANoFkdAg3Sanzg/DHV9lChoBmgJaA9DCNDTgEHSXl5AlIaUUpRoFU3oA2gWR0CDf23n6l+FdX2UKGgGaAloD0MISzlf7D3WZUCUhpRSlGgVTegDaBZHQIOFHLeQ+2V1fZQoaAZoCWgPQwjDR8SUSHxcQJSGlFKUaBVN6ANoFkdAg4qYt6HCXXV9lChoBmgJaA9DCL2MYrmlo0jAlIaUUpRoFU0xAWgWR0CDjAQnx8UmdX2UKGgGaAloD0MIxa7t7ZbTXUCUhpRSlGgVTegDaBZHQIOVr7XQMQV1fZQoaAZoCWgPQwim7souGBBAwJSGlFKUaBVNEwFoFkdAg5jfgiu+y3V9lChoBmgJaA9DCBNGs7J9tlpAlIaUUpRoFU3oA2gWR0CDmsCfYjB3dX2UKGgGaAloD0MIK/aX3ZNAVkCUhpRSlGgVTegDaBZHQIOfqqS5iEx1fZQoaAZoCWgPQwgpzHucaf5QQJSGlFKUaBVN6ANoFkdAg6CdHMEA53V9lChoBmgJaA9DCBe7fVaZKSPAlIaUUpRoFU16AWgWR0CDpAydFvycdX2UKGgGaAloD0MI/Wt55XoCX0CUhpRSlGgVTegDaBZHQIOlFUOuq3p1fZQoaAZoCWgPQwg7w9SWOmpYQJSGlFKUaBVN6ANoFkdAg6XryMDOknV9lChoBmgJaA9DCDZy3ZTyyhhAlIaUUpRoFU0IAWgWR0CD2mEM9bHIdX2UKGgGaAloD0MIuHaiJCT+VECUhpRSlGgVTegDaBZHQIPnIumJm/Z1fZQoaAZoCWgPQwiiCKnb2ZVVQJSGlFKUaBVN6ANoFkdAg+rrZBcAznV9lChoBmgJaA9DCE3aVN0ja1tAlIaUUpRoFU3oA2gWR0CD6y3NLUTddX2UKGgGaAloD0MIHXIz3IBxUECUhpRSlGgVTegDaBZHQIPtPJkoWpJ1fZQoaAZoCWgPQwgMeJlho/Q4QJSGlFKUaBVNHAFoFkdAhAyZAhStNnV9lChoBmgJaA9DCEURUrezTyRAlIaUUpRoFU0LAWgWR0CEDq9XcQAddX2UKGgGaAloD0MIN8XjolrCYECUhpRSlGgVTegDaBZHQIQhZB3Roh91fZQoaAZoCWgPQwihoupXOj1iQJSGlFKUaBVN6ANoFkdAhCeshX8wYnV9lChoBmgJaA9DCMXKaOTzEVhAlIaUUpRoFU3oA2gWR0CELecJ+lTFdX2UKGgGaAloD0MIVWr2QCumR0CUhpRSlGgVTegDaBZHQIQvaESM98t1fZQoaAZoCWgPQwiPU3Qkl+8zwJSGlFKUaBVNHwFoFkdAhDdAhbGFSXV9lChoBmgJaA9DCNXo1QClTVpAlIaUUpRoFU3oA2gWR0CEOfN4Z/CqdX2UKGgGaAloD0MIED//PXjiXkCUhpRSlGgVTegDaBZHQIQ9ZBLPD511fZQoaAZoCWgPQwg0ETY8vblcQJSGlFKUaBVN6ANoFkdAhET0nPVurXV9lChoBmgJaA9DCHAnEeFfkE5AlIaUUpRoFU3oA2gWR0CERhVurIYFdX2UKGgGaAloD0MIJ2iTw6cZYUCUhpRSlGgVTegDaBZHQIRKKy2QXAN1fZQoaAZoCWgPQwhxHeOKixdVQJSGlFKUaBVN6ANoFkdAhEtYcNpdr3V9lChoBmgJaA9DCL75DRMNll5AlIaUUpRoFU3oA2gWR0CETEDujRD1dWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b5b0223bb8e2b8803d6719074c6a06a15281db0d43a89d04b8ae86ad1370bd3
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:179b416106f8366927c2836a668e821b5a3d6c200c76447e83590703b1bd3fb8
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1df13310d3ee15f713d66612c77f31367953be5658b3b106a8dbf8af3eff4215
|
3 |
+
size 237850
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 144.89317132383195, "std_reward": 53.30408897628222, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-20T16:11:43.024761"}
|