File size: 2,449 Bytes
75f9f5f
 
 
 
 
 
5b3802b
75f9f5f
 
 
 
 
 
 
 
 
5b3802b
 
75f9f5f
5b3802b
75f9f5f
 
 
 
5b3802b
75f9f5f
 
 
 
 
 
 
5b3802b
75f9f5f
5b3802b
 
75f9f5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b3802b
 
75f9f5f
 
5b3802b
75f9f5f
 
 
5b3802b
75f9f5f
 
 
 
 
5b3802b
 
 
 
 
 
 
 
 
 
75f9f5f
 
 
 
5b3802b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swinv2-tiny-patch4-window8-256-finetuned-eurosat
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: validation
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.983
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swinv2-tiny-patch4-window8-256-finetuned-eurosat

This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0482
- Accuracy: 0.983

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 450
- eval_batch_size: 450
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 1800
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3991        | 1.0   | 46   | 0.2074          | 0.933    |
| 0.1629        | 2.0   | 92   | 0.0946          | 0.971    |
| 0.1294        | 3.0   | 138  | 0.0692          | 0.977    |
| 0.1164        | 4.0   | 184  | 0.0572          | 0.982    |
| 0.1028        | 5.0   | 230  | 0.0494          | 0.984    |
| 0.0893        | 6.0   | 276  | 0.0487          | 0.982    |
| 0.0843        | 7.0   | 322  | 0.0472          | 0.984    |
| 0.0805        | 8.0   | 368  | 0.0437          | 0.983    |
| 0.0705        | 9.0   | 414  | 0.0523          | 0.982    |
| 0.0712        | 10.0  | 460  | 0.0482          | 0.983    |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1