Abinaya commited on
Commit
d91ec79
1 Parent(s): ea1e911

Model save

Browse files
Files changed (2) hide show
  1. README.md +96 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: cc-by-nc-sa-4.0
4
+ base_model: microsoft/layoutlmv3-base
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - doc_lay_net-small
9
+ metrics:
10
+ - precision
11
+ - recall
12
+ - f1
13
+ - accuracy
14
+ model-index:
15
+ - name: layoutlmv3-finetuned-DocLayNet
16
+ results:
17
+ - task:
18
+ name: Token Classification
19
+ type: token-classification
20
+ dataset:
21
+ name: doc_lay_net-small
22
+ type: doc_lay_net-small
23
+ config: DocLayNet_2022.08_processed_on_2023.01
24
+ split: test
25
+ args: DocLayNet_2022.08_processed_on_2023.01
26
+ metrics:
27
+ - name: Precision
28
+ type: precision
29
+ value: 0.876231416801003
30
+ - name: Recall
31
+ type: recall
32
+ value: 0.876231416801003
33
+ - name: F1
34
+ type: f1
35
+ value: 0.876231416801003
36
+ - name: Accuracy
37
+ type: accuracy
38
+ value: 0.876231416801003
39
+ ---
40
+
41
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
+ should probably proofread and complete it, then remove this comment. -->
43
+
44
+ # layoutlmv3-finetuned-DocLayNet
45
+
46
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the doc_lay_net-small dataset.
47
+ It achieves the following results on the evaluation set:
48
+ - Loss: 0.4878
49
+ - Precision: 0.8762
50
+ - Recall: 0.8762
51
+ - F1: 0.8762
52
+ - Accuracy: 0.8762
53
+
54
+ ## Model description
55
+
56
+ More information needed
57
+
58
+ ## Intended uses & limitations
59
+
60
+ More information needed
61
+
62
+ ## Training and evaluation data
63
+
64
+ More information needed
65
+
66
+ ## Training procedure
67
+
68
+ ### Training hyperparameters
69
+
70
+ The following hyperparameters were used during training:
71
+ - learning_rate: 1e-05
72
+ - train_batch_size: 16
73
+ - eval_batch_size: 16
74
+ - seed: 42
75
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
+ - lr_scheduler_type: linear
77
+ - lr_scheduler_warmup_ratio: 0.1
78
+ - training_steps: 1000
79
+ - mixed_precision_training: Native AMP
80
+
81
+ ### Training results
82
+
83
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
84
+ |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
85
+ | 1.1244 | 2.9070 | 250 | 0.7630 | 0.7337 | 0.7337 | 0.7337 | 0.7337 |
86
+ | 0.2934 | 5.8140 | 500 | 0.4878 | 0.8762 | 0.8762 | 0.8762 | 0.8762 |
87
+ | 0.1028 | 8.7209 | 750 | 0.5626 | 0.8752 | 0.8752 | 0.8752 | 0.8752 |
88
+ | 0.0539 | 11.6279 | 1000 | 0.6090 | 0.8719 | 0.8719 | 0.8719 | 0.8719 |
89
+
90
+
91
+ ### Framework versions
92
+
93
+ - Transformers 4.45.2
94
+ - Pytorch 2.5.0+cu124
95
+ - Datasets 3.0.1
96
+ - Tokenizers 0.20.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0a267b5d27284f38ccc435e33dc347688615d52bda9e7ee407fa68326d3b75bc
3
  size 503730436
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80d68af24114748200446598d0db27091d0127babcff333a6091f3d7a9b170a1
3
  size 503730436