{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fac7289a280>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679109530333886351, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAM0EyD1cKym6pu+6OgIVLDYsRUo7RhDYuQAAgD8AAIA/zc4FPY+mFbp5Jzy7tuAetkCGgznGyIw1AACAPwAAgD8mO8S94qlUPxjqGr1KE7a+u7ykvTanlTwAAAAAAAAAADMqlz17XpO6Y3HTOutMtjWY6qk6Dfn0uQAAgD8AAIA/Zks6vey05rvQ7zk8qQdTPJXOQj3JADO9AACAPwAAgD8mu8I9ILOeP9rzpj4f7uC+lcGOPWVF4TwAAAAAAAAAAGaqvT2PJhe6jyeWt+s2frJucXM6Oj+rNgAAgD8AAIA/2nTJPeEojLo8hRQ8TfK/NqDyR7rntrY1AACAPwAAgD/dq6M+isFqPn5xCr5SC5m+0MA5PcOIersAAAAAAAAAAE0Jmr3bla283mM5PrpJh70TjwK+pu2uvgAAAAAAAIA/s+s8PfYMCbpoheY79uSCtliaT7rZj4O1AACAPwAAgD9NMA499uw9uvp3lzwDqSu9lTR9uoVFCL0AAAAAAAAAAE2RkD17rqy64lbPOonNVDWP5AO6JhTsuQAAgD8AAIA/M6vxu0jXhboyJ5Y6qyorNn7eQzsXyKq5AACAPwAAgD+mshE+Vu26P3WGDz/jMl2+dki+PWYMQz4AAAAAAAAAAAB8FzwKh3S5MngTPD9KA7QfZka78lCoswAAgD8AAIA/ZoQwPSkYZbq1k/u7wuHANjAOg7lL0i22AAAAAAAAgD+aWUA8KcAOupK8DDwxs7G2rpxOujQBrLUAAIA/AACAPy39PL7ohI8+VqqFPuMgeb6T+k28CdO6vAAAAAAAAAAAzYMCPVyDVbp6pDQ85OZ2NmNfQ7piZ2A1AACAPwAAgD9mNtK6XGMPur4bmLmGTrq1SdiOutuAKDUAAIA/AACAP82fojxSEL65WeskOs33mjR4QJC408JEuQAAgD8AAIA/AOIzPXvClbrId8m73g/ztnPZz7l6kVk2AACAPwAAgD8apJ09j95buuraoTkiphAyUX3buq5bvLgAAIA/AACAP5pKpDy4du25roUeug/fWDXftdy6Nsk2OQAAgD8AAIA/M9GPPKhYhD+A8UQ9Xmnpvu5Pdjy+oSi9AAAAAAAAAADNHmc8hau6ufg23joRdI20W3+euzkaBLoAAAAAAACAP7P7Nb35SoY/7yuMuwRr0L7YttS8jpy7PQAAAAAAAAAAzX7kPe4snD13MCq+V5yIvi5OoDzF4X29AAAAAAAAAABmXtA7gG64P2jpVz1E2Ru+BFkXu7m1kr0AAAAAAAAAAE3MCb1cy0C6cJO7u5d0+DfhSk+7Au4VtwAAgD8AAIA/MxNJutfzGLmOmKw77BlNN+FmqrvrS6q6AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInbryWZ5CY0CUhpRSlIwBbJRN6AOMAXSUR0CTP/BKcurZdX2UKGgGaAloD0MIbw7Xao8VYkCUhpRSlGgVTegDaBZHQJNG42MsH0N1fZQoaAZoCWgPQwiJIw9EFrtjQJSGlFKUaBVN6ANoFkdAk0eiYLLIP3V9lChoBmgJaA9DCM+8HHZfDWJAlIaUUpRoFU3oA2gWR0CTTLA/cFhYdX2UKGgGaAloD0MIvFtZojPGY0CUhpRSlGgVTegDaBZHQJNQPYK6WgR1fZQoaAZoCWgPQwgm++dpQABiQJSGlFKUaBVN6ANoFkdAk1qV0xM363V9lChoBmgJaA9DCE7yI37F4GFAlIaUUpRoFU3oA2gWR0CTXHxCIDYAdX2UKGgGaAloD0MIjXqIRndEZUCUhpRSlGgVTegDaBZHQJNks/NZ/1B1fZQoaAZoCWgPQwhGlsyxvNJgQJSGlFKUaBVN6ANoFkdAk2inBciW3XV9lChoBmgJaA9DCAQAx569kmNAlIaUUpRoFU3oA2gWR0CTcZntOVPfdX2UKGgGaAloD0MIopi8AeapYUCUhpRSlGgVTegDaBZHQJN5czUI9kl1fZQoaAZoCWgPQwjf+UUJ+ndkQJSGlFKUaBVN6ANoFkdAk3rEaVD8cnV9lChoBmgJaA9DCOAO1CkPomNAlIaUUpRoFU3oA2gWR0CTet/XGwRodX2UKGgGaAloD0MIRbx1/u2QTkCUhpRSlGgVS8FoFkdAk3s2k30f5nV9lChoBmgJaA9DCOz6BbthKmJAlIaUUpRoFU3oA2gWR0CTfCkrf+CLdX2UKGgGaAloD0MIH4MVp1qtZ0CUhpRSlGgVTegDaBZHQJN85poK2KF1fZQoaAZoCWgPQwj5TWGlAg9hQJSGlFKUaBVN6ANoFkdAk38YPK+zt3V9lChoBmgJaA9DCJ4KuOf5EWdAlIaUUpRoFU3oA2gWR0CTgYleWv8qdX2UKGgGaAloD0MIrU85JgtYYUCUhpRSlGgVTegDaBZHQJOCN71Iy0t1fZQoaAZoCWgPQwhaSpaT0DBlQJSGlFKUaBVN6ANoFkdAk4P8p5NXYHV9lChoBmgJaA9DCG40gLdAGE1AlIaUUpRoFUvhaBZHQJOFIghbGFV1fZQoaAZoCWgPQwgjvD0IAQBgQJSGlFKUaBVN6ANoFkdAk4uKbBoEjnV9lChoBmgJaA9DCOKrHcW5DGNAlIaUUpRoFU3oA2gWR0CTkxmICU5ddX2UKGgGaAloD0MIHClbJO0eTUCUhpRSlGgVS/VoFkdAk5VUHlfZ3HV9lChoBmgJaA9DCN+l1CVjNGRAlIaUUpRoFU3oA2gWR0CTll6jWTX8dX2UKGgGaAloD0MIvHfUmBAnTECUhpRSlGgVS8RoFkdAk5lZ80DU3HV9lChoBmgJaA9DCLZoAdrWEGdAlIaUUpRoFU3oA2gWR0CTm9XCj1wpdX2UKGgGaAloD0MIEcgljjzwYkCUhpRSlGgVTegDaBZHQJOhgJXyRSx1fZQoaAZoCWgPQwgQ7PgvEJRkQJSGlFKUaBVN6ANoFkdAk6Gcc6vJR3V9lChoBmgJaA9DCGX+0TdpTF9AlIaUUpRoFU3oA2gWR0CT5QiA2AG0dX2UKGgGaAloD0MI7IfYYGGzZkCUhpRSlGgVTegDaBZHQJPoAkcCHRF1fZQoaAZoCWgPQwhP54pSwr1kQJSGlFKUaBVN6ANoFkdAk+jODBdld3V9lChoBmgJaA9DCJJdaRkpGWRAlIaUUpRoFU3oA2gWR0CT6cX+VC5VdX2UKGgGaAloD0MIWmWmtH5hZECUhpRSlGgVTegDaBZHQJPv+XPZ7HB1fZQoaAZoCWgPQwijlXuB2d9kQJSGlFKUaBVN6ANoFkdAk/b+gHu7YnV9lChoBmgJaA9DCMUDyqZcyF1AlIaUUpRoFU3oA2gWR0CT9zFbmlqKdX2UKGgGaAloD0MItTNMbalaZECUhpRSlGgVTegDaBZHQJP6CIVM23t1fZQoaAZoCWgPQwi4zr9ddptkQJSGlFKUaBVN6ANoFkdAlAA8SbpeNXV9lChoBmgJaA9DCLpKd9dZNWBAlIaUUpRoFU3oA2gWR0CUAOZmqYJFdX2UKGgGaAloD0MIVfgzvFm1aECUhpRSlGgVTegDaBZHQJQFk13t8eF1fZQoaAZoCWgPQwhckZighlZiQJSGlFKUaBVN6ANoFkdAlAjw00m+kHV9lChoBmgJaA9DCKLUXkTb2GZAlIaUUpRoFU3oA2gWR0CUErnSfDk3dX2UKGgGaAloD0MIhUGZRpNrMkCUhpRSlGgVS7JoFkdAlBPfh/Aj6nV9lChoBmgJaA9DCFjlQuVfxl9AlIaUUpRoFU3oA2gWR0CUIi8CxNZedX2UKGgGaAloD0MIDcLc7mXfZECUhpRSlGgVTegDaBZHQJQp4F3Y+St1fZQoaAZoCWgPQwiOeR1xyFReQJSGlFKUaBVN6ANoFkdAlC6WU4aP0nV9lChoBmgJaA9DCIV5jzNNxmNAlIaUUpRoFU3oA2gWR0CUL9FnIyTIdX2UKGgGaAloD0MISDFAogn1Z0CUhpRSlGgVTegDaBZHQJQv63x4IKN1fZQoaAZoCWgPQwikUYGTbd5kQJSGlFKUaBVN6ANoFkdAlDBIwdsBQ3V9lChoBmgJaA9DCEcFTraBWmBAlIaUUpRoFU3oA2gWR0CUMdOiWVu8dX2UKGgGaAloD0MIhzO/mgO4YECUhpRSlGgVTegDaBZHQJQz5Cx/ust1fZQoaAZoCWgPQwjjGwqfrZ9iQJSGlFKUaBVN6ANoFkdAlDY0MXrMT3V9lChoBmgJaA9DCJLNVfOcimJAlIaUUpRoFU3oA2gWR0CUNtwLVnVYdX2UKGgGaAloD0MIJVmHo6tfaECUhpRSlGgVTegDaBZHQJQ4mv2Xb/R1fZQoaAZoCWgPQwgDIy9r4spiQJSGlFKUaBVN6ANoFkdAlEAavV3EAHV9lChoBmgJaA9DCCC3Xz5ZOT5AlIaUUpRoFUvEaBZHQJRFItSQ5m11fZQoaAZoCWgPQwi+o8aEGF5gQJSGlFKUaBVN6ANoFkdAlEdo0l7dBXV9lChoBmgJaA9DCCBfQgUHPmVAlIaUUpRoFU3oA2gWR0CUSaMuez2OdX2UKGgGaAloD0MIGD+Ne3P4ZECUhpRSlGgVTegDaBZHQJRKoID5j6N1fZQoaAZoCWgPQwiN7bWg90lhQJSGlFKUaBVN6ANoFkdAlE2YbbUPQXV9lChoBmgJaA9DCIOmJVZGAl9AlIaUUpRoFU3oA2gWR0CUUBs5GSZCdX2UKGgGaAloD0MIRZxOstV4ZECUhpRSlGgVTegDaBZHQJRXon9ehPF1fZQoaAZoCWgPQwjaOc0C7elcQJSGlFKUaBVN6ANoFkdAlFe83AEdNnV9lChoBmgJaA9DCAtfX+vSs2NAlIaUUpRoFU3oA2gWR0CUWw3hGYrsdX2UKGgGaAloD0MIby2T4fgUYkCUhpRSlGgVTegDaBZHQJRd/2pQ1rJ1fZQoaAZoCWgPQwhrSNxjaXtlQJSGlFKUaBVN6ANoFkdAlJ8RcE/0NHV9lChoBmgJaA9DCPpEniTdKGRAlIaUUpRoFU3oA2gWR0CUn7cy31BddX2UKGgGaAloD0MI02hyMQa+XkCUhpRSlGgVTegDaBZHQJSkkUHpr1x1fZQoaAZoCWgPQwif5Xlwd6hIQJSGlFKUaBVLtWgWR0CUp4ZTQ3PzdX2UKGgGaAloD0MI7zhFR/J5YkCUhpRSlGgVTegDaBZHQJSrSqvNeMR1fZQoaAZoCWgPQwjjcVEtovBjQJSGlFKUaBVN6ANoFkdAlKt6Yu01InV9lChoBmgJaA9DCFhv1ArTTWNAlIaUUpRoFU3oA2gWR0CUrk/TLGJfdX2UKGgGaAloD0MIeNMtO0QVaECUhpRSlGgVTegDaBZHQJS1HuQZGax1fZQoaAZoCWgPQwi/RLx1/mhmQJSGlFKUaBVN6ANoFkdAlLnWce8wpXV9lChoBmgJaA9DCDUMHxHTK2dAlIaUUpRoFU3oA2gWR0CUvTBTXJ5ndX2UKGgGaAloD0MIcO8a9CWDZ0CUhpRSlGgVTegDaBZHQJTG+V6eGwl1fZQoaAZoCWgPQwjGxObjWuFiQJSGlFKUaBVN6ANoFkdAlMiA0sOG03V9lChoBmgJaA9DCOuM74tLzTjAlIaUUpRoFUuNaBZHQJTPn9MsYl91fZQoaAZoCWgPQwhw0F59vNxlQJSGlFKUaBVN6ANoFkdAlNfdhRZU1nV9lChoBmgJaA9DCCXpmsm3umdAlIaUUpRoFU3oA2gWR0CU3k2Jiy6ddX2UKGgGaAloD0MICfzh5z/xZkCUhpRSlGgVTegDaBZHQJTjV40Mw111fZQoaAZoCWgPQwgC2IAI8YNgQJSGlFKUaBVN6ANoFkdAlOSoPTXrdHV9lChoBmgJaA9DCMLZrWUyE1xAlIaUUpRoFU3oA2gWR0CU5MLpiZv2dX2UKGgGaAloD0MI+rmhKTtKY0CUhpRSlGgVTegDaBZHQJTlFpWV/tp1fZQoaAZoCWgPQwgLs9DOachWQJSGlFKUaBVN6ANoFkdAlOjycLBsRHV9lChoBmgJaA9DCNQNFHgnamJAlIaUUpRoFU3oA2gWR0CU6251/2CedX2UKGgGaAloD0MIaCPXTanIY0CUhpRSlGgVTegDaBZHQJTsHHcUM5R1fZQoaAZoCWgPQwiHTWTmgjJhQJSGlFKUaBVN6ANoFkdAlO35Grjo6nV9lChoBmgJaA9DCPgZFw4EMWFAlIaUUpRoFU3oA2gWR0CU9kGEf1YhdX2UKGgGaAloD0MIPxwkRPmRaECUhpRSlGgVTegDaBZHQJT71JBgNPR1fZQoaAZoCWgPQwgv/UtSmT1kQJSGlFKUaBVN6ANoFkdAlP5pAIIF/3V9lChoBmgJaA9DCDzAkxauWmJAlIaUUpRoFU3oA2gWR0CVAK5aNdZ8dX2UKGgGaAloD0MI9gfKbXsOZECUhpRSlGgVTegDaBZHQJUByhufmLd1fZQoaAZoCWgPQwilaybf7ARkQJSGlFKUaBVN6ANoFkdAlQZRePaL43V9lChoBmgJaA9DCI4+5gOCtGJAlIaUUpRoFU3oA2gWR0CVEmnzQNTcdX2UKGgGaAloD0MIEvsEUIwNYkCUhpRSlGgVTegDaBZHQJUShkrf+CN1fZQoaAZoCWgPQwjRzmkW6P5kQJSGlFKUaBVN6ANoFkdAlRXHctXgcnV9lChoBmgJaA9DCFBQilbueGVAlIaUUpRoFU3oA2gWR0CVF9IH1OCYdX2UKGgGaAloD0MIR450BsaGY0CUhpRSlGgVTegDaBZHQJUYXMTviLl1fZQoaAZoCWgPQwgTnPpA8ntkQJSGlFKUaBVN6ANoFkdAlRj8M/hVEXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 12, "clip_range": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}