--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: wav2vec2-romanian-test results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: ro split: test args: ro metrics: - name: Wer type: wer value: 0.9989733059548255 --- # wav2vec2-romanian-test This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3928 - Wer: 0.9990 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 4.4031 | 1.7730 | 500 | 1.7235 | 1.0 | | 0.8308 | 3.5461 | 1000 | 0.5378 | 0.9997 | | 0.4317 | 5.3191 | 1500 | 0.4410 | 0.9995 | | 0.3127 | 7.0922 | 2000 | 0.4157 | 0.9992 | | 0.2468 | 8.8652 | 2500 | 0.4119 | 0.9987 | | 0.2086 | 10.6383 | 3000 | 0.3922 | 0.9995 | | 0.1787 | 12.4113 | 3500 | 0.3861 | 0.9990 | | 0.1601 | 14.1844 | 4000 | 0.3829 | 0.9987 | | 0.1459 | 15.9574 | 4500 | 0.3929 | 0.9990 | | 0.1315 | 17.7305 | 5000 | 0.3983 | 0.9990 | | 0.1218 | 19.5035 | 5500 | 0.4068 | 0.9987 | | 0.1138 | 21.2766 | 6000 | 0.4139 | 0.9990 | | 0.107 | 23.0496 | 6500 | 0.3851 | 0.9990 | | 0.0983 | 24.8227 | 7000 | 0.3820 | 0.9992 | | 0.0937 | 26.5957 | 7500 | 0.3962 | 0.9990 | | 0.0909 | 28.3688 | 8000 | 0.3928 | 0.9990 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu124 - Datasets 2.21.0 - Tokenizers 0.19.1