File size: 2,352 Bytes
d3bf8b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42dd1ff
 
 
d3bf8b2
 
046e8e0
d3bf8b2
046e8e0
 
d3bf8b2
046e8e0
 
42dd1ff
046e8e0
d3bf8b2
 
 
 
255fb1b
d3bf8b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
367e77e
d3bf8b2
1bf3e8b
 
 
 
 
 
d3bf8b2
189aa33
 
d3bf8b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
367e77e
d3bf8b2
330970c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: bart-large-cnn-samsum
  results:
  - task:
      type: summarization
      name: Summarization
    dataset:
      name: >-
        SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive
        Summarization
      type: samsum
    metrics:
    - type: rouge-1
      value: 43.6283
      name: Validation ROUGE-1
    - type: rouge-2
      value: 19.3096
      name: Validation ROUGE-2
    - type: rouge-l
      value: 41.214
      name: Validation ROUGE-L
---

# bart-large-cnn-samsum

This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the [samsum dataset](https://huggingface.co/datasets/samsum).
It achieves the following results on the evaluation set:
- Loss: 0.755
- Rouge1: 43.6283
- Rouge2: 19.3096
- Rougel: 41.2140
- Rougelsum: 37.2590

## Model description

More information needed

## Intended uses & limitations

```python
from transformers import pipeline
summarizer = pipeline("text2text-generation", model="AdamCodd/bart-large-cnn-samsum")

conversation = '''Emily: Hey Alex, have you heard about the new restaurant that opened downtown?
Alex: No, I haven't. What's it called?
Emily: It's called "Savory Bites." They say it has the best pasta in town.
Alex: That sounds delicious. When are you thinking of checking it out?
Emily: How about this Saturday? We can make it a dinner date.
Alex: Sounds like a plan, Emily. I'm looking forward to it.                                       
'''
result = summarizer(conversation)
print(result)
```

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 1270
- optimizer: AdamW with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 150
- num_epochs: 1

### Training results

| key | value |
| --- | ----- |
| eval_rouge1 | 43.6283 |
| eval_rouge2 | 19.3096 |
| eval_rougeL | 41.2140 |
| eval_rougeLsum | 37.2590 |

### Framework versions

- Transformers 4.34.0
- Pytorch lightning 2.0.9
- Tokenizers 0.14.0

If you want to support me, you can [here](https://ko-fi.com/adamcodd).