File size: 3,130 Bytes
8d01593 618c72e 8d01593 c80b4ca 8d01593 805bd76 8d01593 805bd76 8d01593 618c72e 8d01593 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
---
license: apache-2.0
tags:
- generated_from_trainer
- seq2seq
- summarization
datasets:
- samsum
metrics:
- rouge
widget:
- text: |
Emily: Hey Alex, have you heard about the new restaurant that opened
downtown?
Alex: No, I haven't. What's it called?
Emily: It's called "Savory Bites." They say it has the best pasta in town.
Alex: That sounds delicious. When are you thinking of checking it out?
Emily: How about this Saturday? We can make it a dinner date.
Alex: Sounds like a plan, Emily. I'm looking forward to it.
model-index:
- name: bart-large-xsum-samsum
results:
- task:
type: summarization
name: Summarization
dataset:
name: >-
SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive
Summarization
type: samsum
metrics:
- type: rouge-1
value: 54.3073
name: Validation ROUGE-1
- type: rouge-2
value: 29.0947
name: Validation ROUGE-2
- type: rouge-l
value: 44.4676
name: Validation ROUGE-L
---
# bart-large-xsum-samsum
This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co/facebook/bart-large-xsum) on the [samsum dataset](https://huggingface.co/datasets/samsum).
It achieves the following results on the evaluation set:
- Loss: 0.759
- Rouge1: 54.3073
- Rouge2: 29.0947
- Rougel: 44.4676
- Rougelsum: 49.895
## Model description
This model tends to generate less verbose summaries compared to [AdamCodd/bart-large-cnn-samsum](https://huggingface.co/AdamCodd/bart-large-cnn-samsum), yet I find its quality to be superior (which is reflected in the metrics).
## Intended uses & limitations
Suitable for summarizing dialogue-style text, it may not perform as well with other types of text formats.
```python
from transformers import pipeline
summarizer = pipeline("summarization", model="AdamCodd/bart-large-xsum-samsum")
conversation = '''Emily: Hey Alex, have you heard about the new restaurant that opened downtown?
Alex: No, I haven't. What's it called?
Emily: It's called "Savory Bites." They say it has the best pasta in town.
Alex: That sounds delicious. When are you thinking of checking it out?
Emily: How about this Saturday? We can make it a dinner date.
Alex: Sounds like a plan, Emily. I'm looking forward to it.
'''
result = summarizer(conversation)
print(result)
```
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 1270
- optimizer: AdamW with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 150
- num_epochs: 1
### Training results
| key | value |
| --- | ----- |
| eval_rouge1 | 54.3073 |
| eval_rouge2 | 29.0947 |
| eval_rougeL | 44.4676 |
| eval_rougeLsum | 49.895 |
### Framework versions
- Transformers 4.35.0
- Accelerate 0.24.1
- Datasets 2.14.6
- Tokenizers 0.14.3
If you want to support me, you can [here](https://ko-fi.com/adamcodd). |