|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:1440 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: nomic-ai/modernbert-embed-base |
|
widget: |
|
- source_sentence: What section of the Code of Federal Regulations is quoted? |
|
sentences: |
|
- "and other legal relations of any interested party seeking such declaration.”\ |
|
\ 28 U.S.C. § 2201(a). \nThis statute “is not an independent source of federal\ |
|
\ jurisdiction”; rather, “the availability of \nsuch relief presupposes the existence\ |
|
\ of a judicially remediable right.” Schilling v. Rogers, 363 \nU.S. 666, 677\ |
|
\ (1960). The Court independently has jurisdiction here under the mandamus" |
|
- "appropriate only when the nature of the work is sporadic and unpredictable so\ |
|
\ that a tour of duty \ncannot be regularly scheduled in advance.” Pl.’s Mem.\ |
|
\ at 18 (quoting 5 C.F.R. § 340.403(a)). \nThis regulation explicitly distinguishes\ |
|
\ “intermittent” status from “part-time” status, as it says \nthat “[w]hen an\ |
|
\ agency is able to schedule work in advance on a regular basis, it has an" |
|
- "its discretion, a reviewing court looks to the trial court’s “stated justification\ |
|
\ for refusing to \nmodify” the order. Skolnick, 191 Ill. 2d at 226. \n \n \n\ |
|
In the case at bar, the one-sentence April 25 order did not provide any reasons\ |
|
\ at all. The \nlosing party drafted the order without any stated reasons, although\ |
|
\ a lack of stated reasons may" |
|
- source_sentence: Which office was determined to be an agency in the Soucie case? |
|
sentences: |
|
- "inquiry”); Doe v. Skyline Automobiles, Inc., 375 F. Supp. 3d 401, 405-06 (S.D.N.Y.\ |
|
\ 2019) \n(“other factors must be taken into consideration and analyzed in comparison\ |
|
\ to the public’s \ninterest and the interests of the opposing parties”). \n \n\ |
|
\ \nIllinois has taken steps to protect individuals’ private information. Examples\ |
|
\ include the" |
|
- "Aside from whether the Department’s “approach to artificial intelligence development\ |
|
\ and \nimplementation” should be considered “critical infrastructure,” the Department’s\ |
|
\ affidavit is \n \n \n5\ndeficient in showing that its withholdings qualify as\ |
|
\ “critical infrastructure security information” \nin other ways. For example,\ |
|
\ the affidavit fails to explain how the disclosure of the withheld infor-" |
|
- "whether an entity wields “substantial independent authority”: investigative\ |
|
\ power and authority \nto make final and binding decisions. \nConsider first\ |
|
\ Soucie. The Circuit held that the Office of Science and Technology \n(“OST”)\ |
|
\ was an agency because, beyond advising the President, it had the “independent\ |
|
\ function" |
|
- source_sentence: What is the appellant's burden on appeal? |
|
sentences: |
|
- "Defs.’ Reply at 7–8, 8 n.1. It cites Judicial Watch, Inc. v. Department of Energy,\ |
|
\ 412 F.3d 125 \n(D.C. Cir. 2005), which dealt with the records of employees that\ |
|
\ the Department of Energy \n(“DOE”) had detailed to the National Energy Policy\ |
|
\ Development Group (“NEPDG”). Id. at \n132. The Government quotes the court’s\ |
|
\ statement that “the records those employees created or" |
|
- "records available for inspection and copying is a violation of 5 U.S.C. app.\ |
|
\ 2 § 10(b) and \nconstitutes a failure to perform a duty owed to EPIC within\ |
|
\ the meaning of 28 U.S.C. § 1361.” \nId. . Both counts seek “a writ of mandamus”\ |
|
\ compelling the Commission and its officers to \ncomply with FACA. Id. , 139.\ |
|
\ These counts make clear that EPIC seeks mandamus relief" |
|
- "counsel now cannot fairly contend that the trial court did not consider all the\ |
|
\ facts, especially \nwhen [d]efendant’s counsel offers no court transcript to\ |
|
\ show otherwise.” On appeal, it is \ngenerally the appellant’s burden to provide\ |
|
\ the reviewing court with a sufficient record to \nestablish the error that he\ |
|
\ complains of. Webster v. Hartman, 195 Ill. 2d 426, 436 (2001). “[A]" |
|
- source_sentence: What does the text refer to as a 'statutory distinction'? |
|
sentences: |
|
- "inconsistency in deeming the same entity an advisory committee and an agency.”\ |
|
\ Defs.’ Reply \nat 8. The problem, according to the Government, is that FACA\ |
|
\ generally requires disclosure of \nrecords, yet Exemption 5 would shield a portion\ |
|
\ of these records from public view, which would \nundermine FACA’s “purpose.”\ |
|
\ Id. at 8–9. Gates, Wolfe, and the 1988 OLC opinion echo this" |
|
- "agencies are operating arms of government characterized by ‘substantial independent\ |
|
\ authority in \nthe exercise of specific functions.’” Disclosure of Advisory\ |
|
\ Comm. Deliberative Materials, 12 \nOp. O.L.C. 73, 81 (1988). This “statutory\ |
|
\ distinction,” it concludes, signifies that “advisory \ncommittees are not agencies.”\ |
|
\ Id." |
|
- "the Hon. Israel A. Desierto, Judge, presiding. \n \n \nJudgment \nAffirmed. \n\ |
|
\ \nCounsel on \nAppeal \n \nVictor P. Henderson and Colin Quinn Commito, of Henderson\ |
|
\ Parks, \nLLC, of Chicago, for appellant. \n \nTamara N. Holder, Law Firm of\ |
|
\ Tamara N. Holder LLC, of Chicago, \nfor appellee. \n \n \n \nPanel \n \nPRESIDING\ |
|
\ JUSTICE ODEN JOHNSON delivered the judgment of \nthe court, with opinion." |
|
- source_sentence: What do the newly enacted laws prohibit hospitals from doing regarding |
|
sexual assault victims? |
|
sentences: |
|
- "exclusion for committees “composed wholly of . . . permanent part-time . . .\ |
|
\ employees.” 5 \nU.S.C. app. 2 § 3(2). \n32 \nA second, independent reason why\ |
|
\ the Commission does not fall within this exclusion is \nthat its members are\ |
|
\ not “part-time” federal employees. Instead, they are “intermittent” \nemployees.\ |
|
\ EPIC points to a regulation stating that “[a]n intermittent work schedule is" |
|
- "committee, board, commission, council, conference, panel, task force, or other\ |
|
\ similar group, or \nany subcommittee or other subgroup thereof.” Id. § 3(2).\ |
|
\ Second, it must be “established by \nstatute or reorganization plan,” “established\ |
|
\ or utilized by the President,” or “established or \nutilized by one or more\ |
|
\ agencies.” Id. Third, it must be “established” or “utilized” “in the" |
|
- "confidential advisors (735 ILCS 5/8-804(c) (West 2022)) and prohibit hospitals\ |
|
\ treating sexual \nassault victims from directly billing the victims for the\ |
|
\ services, communicating with victims \nabout a bill, or referring overdue bills\ |
|
\ to collection agencies or credit reporting agencies. 410 \nILCS 70/7.5(a)(1)-(4)\ |
|
\ (West 2022). These recently enacted laws encourage victims to report" |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
model-index: |
|
- name: Fine-tuned with [QuicKB](https://github.com/ALucek/QuicKB) |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 768 |
|
type: dim_768 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.51875 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.69375 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.75 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.83125 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.51875 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.23125 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.14999999999999997 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.08312499999999999 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.51875 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.69375 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.75 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.83125 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.671534966140965 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.6211160714285715 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.6261949467277568 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 512 |
|
type: dim_512 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.49375 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.73125 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.825 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.49375 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2333333333333333 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.14625 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.08249999999999999 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.49375 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.7 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.73125 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.825 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.6607544642083831 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.6085367063492064 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.6146313607229802 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 256 |
|
type: dim_256 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.4375 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.6875 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.725 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.79375 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.4375 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.22916666666666666 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.145 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.079375 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.4375 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.6875 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.725 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.79375 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.6224957341997419 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.566939484126984 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.5740997074969412 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 128 |
|
type: dim_128 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.40625 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.625 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.69375 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.775 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.40625 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.20833333333333331 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.13874999999999998 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.07749999999999999 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.40625 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.625 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.69375 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.775 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.5931742895464828 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.5348859126984128 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.5417826806767716 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 64 |
|
type: dim_64 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.30625 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.4875 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.6 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.6875 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.30625 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.16249999999999998 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.12 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.06875 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.30625 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.4875 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.6 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.6875 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.4854299754851493 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.42175347222222237 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.4326739799760461 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# Fine-tuned with [QuicKB](https://github.com/ALucek/QuicKB) |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) <!-- at revision d556a88e332558790b210f7bdbe87da2fa94a8d8 --> |
|
- **Maximum Sequence Length:** 1024 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** en |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: ModernBertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("AdamLucek/modernbert-embed-quickb-video") |
|
# Run inference |
|
sentences = [ |
|
'What do the newly enacted laws prohibit hospitals from doing regarding sexual assault victims?', |
|
'confidential advisors (735 ILCS 5/8-804(c) (West 2022)) and prohibit hospitals treating sexual \nassault victims from directly billing the victims for the services, communicating with victims \nabout a bill, or referring overdue bills to collection agencies or credit reporting agencies. 410 \nILCS 70/7.5(a)(1)-(4) (West 2022). These recently enacted laws encourage victims to report', |
|
'exclusion for committees “composed wholly of . . . permanent part-time . . . employees.” 5 \nU.S.C. app. 2 § 3(2). \n32 \nA second, independent reason why the Commission does not fall within this exclusion is \nthat its members are not “part-time” federal employees. Instead, they are “intermittent” \nemployees. EPIC points to a regulation stating that “[a]n intermittent work schedule is', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
|
|
* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 | |
|
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------| |
|
| cosine_accuracy@1 | 0.5188 | 0.4938 | 0.4375 | 0.4062 | 0.3063 | |
|
| cosine_accuracy@3 | 0.6937 | 0.7 | 0.6875 | 0.625 | 0.4875 | |
|
| cosine_accuracy@5 | 0.75 | 0.7312 | 0.725 | 0.6937 | 0.6 | |
|
| cosine_accuracy@10 | 0.8313 | 0.825 | 0.7937 | 0.775 | 0.6875 | |
|
| cosine_precision@1 | 0.5188 | 0.4938 | 0.4375 | 0.4062 | 0.3063 | |
|
| cosine_precision@3 | 0.2313 | 0.2333 | 0.2292 | 0.2083 | 0.1625 | |
|
| cosine_precision@5 | 0.15 | 0.1462 | 0.145 | 0.1387 | 0.12 | |
|
| cosine_precision@10 | 0.0831 | 0.0825 | 0.0794 | 0.0775 | 0.0688 | |
|
| cosine_recall@1 | 0.5188 | 0.4938 | 0.4375 | 0.4062 | 0.3063 | |
|
| cosine_recall@3 | 0.6937 | 0.7 | 0.6875 | 0.625 | 0.4875 | |
|
| cosine_recall@5 | 0.75 | 0.7312 | 0.725 | 0.6937 | 0.6 | |
|
| cosine_recall@10 | 0.8313 | 0.825 | 0.7937 | 0.775 | 0.6875 | |
|
| **cosine_ndcg@10** | **0.6715** | **0.6608** | **0.6225** | **0.5932** | **0.4854** | |
|
| cosine_mrr@10 | 0.6211 | 0.6085 | 0.5669 | 0.5349 | 0.4218 | |
|
| cosine_map@100 | 0.6262 | 0.6146 | 0.5741 | 0.5418 | 0.4327 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 1,440 training samples |
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | |
|
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 15.14 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 57 tokens</li><li>mean: 97.82 tokens</li><li>max: 161 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | |
|
|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>What must the advisory committee make available for public inspection?</code> | <code>advisory committee shall be available for public inspection and copying . . . until the advisory <br>committee ceases to exist.” Id. § 10(b). Unlike FOIA, this provision looks forward. It requires <br>committees to take affirmative steps to make their records are public, even absent a request. <br>FACA’s definition of “advisory committee” has four parts. First, it includes “any</code> | |
|
| <code>What did the landlords fail to alert the court about?</code> | <code>court documents containing fake citations, we conclude that <br>imposing monetary sanctions or dismissing this appeal would be <br>disproportionate to Al-Hamim’s violation of the Appellate Rules. <br> <br>23 <br>Further, in their answer brief, the landlords failed to alert this court <br>to the hallucinations in Al-Hamim’s opening brief and did not <br>request an award of attorney fees against Al-Hamim. Under the</code> | |
|
| <code>On what date was the motion served on the plaintiff’s counsel?</code> | <code>also alleged (1) that plaintiff violated section 2-401(e) and (2) that she lacked good cause to <br>file anonymously because she signed an affidavit in her own name in another case with similar <br>allegations. The April 13 motion contains a “Certificate of Service” stating that it was served <br>on plaintiff’s counsel by e-mail on April 13.</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 32 |
|
- `gradient_accumulation_steps`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 4 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
- `tf32`: True |
|
- `load_best_model_at_end`: True |
|
- `optim`: adamw_torch_fused |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 8 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 16 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 4 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: True |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch_fused |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 | |
|
|:----------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| |
|
| 1.0 | 3 | 0.6493 | 0.6372 | 0.5987 | 0.5536 | 0.4520 | |
|
| 2.0 | 6 | 0.6685 | 0.6514 | 0.6208 | 0.5916 | 0.4859 | |
|
| **2.7111** | **8** | **0.6715** | **0.6608** | **0.6225** | **0.5932** | **0.4854** | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.4.0 |
|
- Transformers: 4.48.1 |
|
- PyTorch: 2.5.1+cu124 |
|
- Accelerate: 1.3.0 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |