File size: 25,540 Bytes
7ad2d01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b555a0
7ad2d01
 
 
 
 
 
 
 
8a19abc
 
 
 
 
 
 
 
9b555a0
 
 
 
 
 
 
 
c59f1d9
 
 
 
27efc7b
 
 
 
9b555a0
 
 
8a19abc
c59f1d9
 
27efc7b
 
5620eea
 
 
 
 
 
8a19abc
c59f1d9
 
 
27efc7b
 
 
c59f1d9
 
 
 
 
 
 
 
 
27efc7b
 
 
c59f1d9
 
 
27efc7b
c59f1d9
 
 
 
 
 
 
27efc7b
 
8a19abc
 
 
 
 
 
 
 
 
 
7ad2d01
 
 
 
 
 
 
 
 
 
 
 
 
 
8a19abc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ad2d01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a19abc
 
 
 
 
 
 
 
 
 
 
7ad2d01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a19abc
7ad2d01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
import gradio as gr
import json
import shutil
import sqlite3
import subprocess
import sys
sys.path.append('src/blip')
sys.path.append('src/clip')
import clip
import hashlib
import math
import numpy as np
import pickle
import torchvision.transforms as T
import torchvision.transforms.functional as TF
import requests
import wget
import gradio as grad, random, re
import torch
import os
import utils
import html
import re
import base64
import subprocess
import argparse
import logging
import streamlit as st
import pandas as pd
import datasets
import yaml
import textwrap
import tornado
import time
import cv2 as cv
from torch import autocast
from diffusers import StableDiffusionPipeline
from transformers import pipeline, set_seed
from huggingface_hub import HfApi
from huggingface_hub import hf_hub_download
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, UNet2DConditionModel
from diffusers import StableDiffusionImg2ImgPipeline 
from PIL import Image
from datasets import load_dataset
from share_btn import community_icon_html, loading_icon_html, share_js
from io import BytesIO
from models.blip import blip_decoder
from torch import nn
from torch.nn import functional as F
from tqdm import tqdm
from pathlib import Path
from flask import Flask, request, jsonify, g
from flask_expects_json import expects_json
from flask_cors import CORS
from huggingface_hub import Repository
from flask_apscheduler import APScheduler
from jsonschema import ValidationError
from os import mkdir
from os.path import isdir
from colorthief import ColorThief
from data_measurements.dataset_statistics import DatasetStatisticsCacheClass as dmt_cls
from utils import dataset_utils
from utils import streamlit_utils as st_utils
from dataclasses import asdict
from .transfer import transfer_color
from .utils import convert_bytes_to_pil
from diffusers import DiffusionPipeline
from huggingface_hub.inference_api import InferenceApi
from huggingface_hub import login
from datasets import load_dataset
#from torch import autocast
#from diffusers import StableDiffusionPipeline
#from io import BytesIO
#import base64
#import torch

is_colab = utils.is_google_colab()

from share_btn import community_icon_html, loading_icon_html, share_js

from huggingface_hub import login
login()

from huggingface_hub.inference_api import InferenceApi
inference = InferenceApi(repo_id="bert-base-uncased", token=API_TOKEN)

from datasets import load_dataset

dataset = load_dataset("Fazzie/Teyvat")

from datasets import load_dataset

dataset = load_dataset("Guizmus/AnimeChanStyle")

from datasets import load_dataset

dataset = load_dataset("poloclub/diffusiondb")

from datasets import load_dataset

dataset = load_dataset("Gustavosta/Stable-Diffusion-Prompts")

from datasets import load_dataset
dataset = load_dataset("Fazzie/Teyvat")
from datasets import load_dataset
dataset = load_dataset("Guizmus/AnimeChanStyle")
from datasets import load_dataset
dataset = load_dataset("poloclub/diffusiondb")
from datasets import load_dataset
dataset = load_dataset("Gustavosta/Stable-Diffusion-Prompts")

from datasets import load_dataset
dataset = load_dataset("Fazzie/Teyvat")

from datasets import load_dataset
dataset = load_dataset("Guizmus/AnimeChanStyle")

from datasets import load_dataset
dataset = load_dataset("poloclub/diffusiondb")

from datasets import load_dataset
dataset = load_dataset("Gustavosta/Stable-Diffusion-Prompts")


dataset = load_dataset("Fazzie/Teyvat")


dataset = load_dataset("Guizmus/AnimeChanStyle")


dataset = load_dataset("poloclub/diffusiondb")


dataset = load_dataset("Gustavosta/Stable-Diffusion-Prompts")

dataset = load_dataset("Fazzie/Teyvat")
dataset = load_dataset("Guizmus/AnimeChanStyle")
dataset = load_dataset("poloclub/diffusiondb")
dataset = load_dataset("Gustavosta/Stable-Diffusion-Prompts")

dataset = load_dataset("Fazzie/Teyvat")

dataset = load_dataset("Guizmus/AnimeChanStyle")

dataset = load_dataset("poloclub/diffusiondb")

dataset = load_dataset("Gustavosta/Stable-Diffusion-Prompts")

sys.path.append('src/blip')
sys.path.append('src/clip')

pipeline = DiffusionPipeline.from_pretrained("flax/waifu-diffusion")
pipeline = DiffusionPipeline.from_pretrained("flax/Cyberpunk-Anime-Diffusion")
pipeline = DiffusionPipeline.from_pretrained("technillogue/waifu-diffusion")
pipeline = DiffusionPipeline.from_pretrained("svjack/Stable-Diffusion-Pokemon-en")
pipeline = DiffusionPipeline.from_pretrained("AdamOswald1/Idk")
pipeline = DiffusionPipeline.from_pretrained("katakana/2D-Mix")

class Model:
    def __init__(self, name, path, prefix):
        self.name = name
        self.path = path
        self.prefix = prefix
        self.pipe_t2i = None
        self.pipe_i2i = None

models = [
    Model("Custom model", "", ""),
    Model("Arcane", "nitrosocke/Arcane-Diffusion", "arcane style"),
    Model("Archer", "nitrosocke/archer-diffusion", "archer style"),
    Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style"),
    Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style"),
    Model("Modern Disney", "nitrosocke/modern-disney-diffusion", "modern disney style"),
    Model("Classic Disney", "nitrosocke/classic-anim-diffusion", "classic disney style"),
    Model("Waifu", "hakurei/waifu-diffusion", ""),
    Model("Pokémon", "lambdalabs/sd-pokemon-diffusers", "pokemon style"),
    Model("Pokémon", "svjack/Stable-Diffusion-Pokemon-en", "pokemon style"),
    Model("Pony Diffusion", "AstraliteHeart/pony-diffusion", "pony style"),
    Model("Robo Diffusion", "nousr/robo-diffusion", "robo style"),
    Model("Cyberpunk Anime", "DGSpitzer/Cyberpunk-Anime-Diffusion, flax/Cyberpunk-Anime-Diffusion", "cyberpunk style"),
    Model("Cyberpunk Anime", "DGSpitzer/Cyberpunk-Anime-Diffusion", "cyberpunk style"),
    Model("Cyberpunk Anime", "flax/Cyberpunk-Anime-Diffusion", "cyberpunk style"),
    Model("Cyberware", "Eppinette/Cyberware", "cyberware"),
    Model("Tron Legacy", "dallinmackay/Tron-Legacy-diffusion", "trnlgcy"),
    Model("Waifu", "flax/waifu-diffusion", ""),
    Model("Dark Souls", "Guizmus/DarkSoulsDiffusion", "dark souls style"),
    Model("Waifu", "technillogue/waifu-diffusion", ""),
    Model("Ouroborus", "Eppinette/Ouroboros", "m_ouroboros style"),
    Model("Ouroborus alt", "Eppinette/Ouroboros", "m_ouroboros"),
    Model("Waifu", "Eppinette/Mona", "Mona"),
    Model("Waifu", "Eppinette/Mona", "Mona Woman"),
    Model("Waifu", "Eppinette/Mona", "Mona Genshin"),
    Model("Genshin", "Eppinette/Mona", "Mona"),
    Model("Genshin", "Eppinette/Mona", "Mona Woman"),
    Model("Genshin", "Eppinette/Mona", "Mona Genshin"),
    Model("Space Machine", "rabidgremlin/sd-db-epic-space-machine", "EpicSpaceMachine"),
    Model("Spacecraft", "rabidgremlin/sd-db-epic-space-machine", "EpicSpaceMachine"),
    Model("TARDIS", "Guizmus/Tardisfusion", "Classic Tardis style"),
    Model("TARDIS", "Guizmus/Tardisfusion", "Modern Tardis style"),
    Model("TARDIS", "Guizmus/Tardisfusion", "Tardis Box style"),
    Model("Spacecraft", "Guizmus/Tardisfusion", "Classic Tardis style"),
    Model("Spacecraft", "Guizmus/Tardisfusion", "Modern Tardis style"),
    Model("Spacecraft", "Guizmus/Tardisfusion", "Tardis Box style"),
    Model("CLIP", "EleutherAI/clip-guided-diffusion", "CLIP"),
    Model("Face Swap", "felixrosberg/face-swap", "faceswap"),
    Model("Face Swap", "felixrosberg/face-swap", "faceswap with"),
    Model("Face Swap", "felixrosberg/face-swap", "faceswapped"),
    Model("Face Swap", "felixrosberg/face-swap", "faceswapped with"),
    Model("Face Swap", "felixrosberg/face-swap", "face on"),
    Model("Waifu", "Fampai/lumine_genshin_impact", "lumine_genshin"),
    Model("Waifu", "Fampai/lumine_genshin_impact", "lumine"),
    Model("Waifu", "Fampai/lumine_genshin_impact", "Lumine Genshin"),
    Model("Waifu", "Fampai/lumine_genshin_impact", "Lumine_genshin"),
    Model("Waifu", "Fampai/lumine_genshin_impact", "Lumine_Genshin"),
    Model("Waifu", "Fampai/lumine_genshin_impact", "Lumine"),
    Model("Genshin", "Fampai/lumine_genshin_impact", "Lumine_genshin"),
    Model("Genshin", "Fampai/lumine_genshin_impact", "Lumine_Genshin"),
    Model("Genshin", "Fampai/lumine_genshin_impact", "Lumine"),
    Model("Genshin", "Fampai/lumine_genshin_impact", "Lumine Genshin"),
    Model("Genshin", "Fampai/lumine_genshin_impact", "lumine"),
    Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "Ganyu"),
    Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "Ganyu Woman"),
    Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "Ganyu Genshin"),
    Model("Waifu", "sd-concepts-library/ganyu-genshin-impact", "Ganyu"),
    Model("Waifu", "sd-concepts-library/ganyu-genshin-impact", "Ganyu Woman"),
    Model("Waifu", "sd-concepts-library/ganyu-genshin-impact", "Ganyu Genshin"),
    Model("Waifu", "Fampai/raiden_genshin_impact", "raiden_ei"),
    Model("Waifu", "Fampai/raiden_genshin_impact", "Raiden Ei"),
    Model("Waifu", "Fampai/raiden_genshin_impact", "Ei Genshin"),
    Model("Waifu", "Fampai/raiden_genshin_impact", "Raiden Genshin"),
    Model("Waifu", "Fampai/raiden_genshin_impact", "Raiden_Genshin"),
    Model("Waifu", "Fampai/raiden_genshin_impact", "Ei_Genshin"),
    Model("Waifu", "Fampai/raiden_genshin_impact", "Raiden"),
    Model("Waifu", "Fampai/raiden_genshin_impact", "Ei"),
    Model("Genshin", "Fampai/raiden_genshin_impact", "Raiden Ei"),
    Model("Genshin", "Fampai/raiden_genshin_impact", "raiden_ei"),
    Model("Genshin", "Fampai/raiden_genshin_impact", "Raiden"),
    Model("Genshin", "Fampai/raiden_genshin_impact", "Raiden Genshin"),
    Model("Genshin", "Fampai/raiden_genshin_impact", "Ei Genshin"),
    Model("Genshin", "Fampai/raiden_genshin_impact", "Raiden_Genshin"),
    Model("Genshin", "Fampai/raiden_genshin_impact", "Ei_Genshin"),
    Model("Genshin", "Fampai/raiden_genshin_impact", "Ei"),
    Model("Waifu", "Fampai/hutao_genshin_impact", "hutao_genshin"),
    Model("Waifu", "Fampai/hutao_genshin_impact", "HuTao_Genshin"),
    Model("Waifu", "Fampai/hutao_genshin_impact", "HuTao Genshin"),
    Model("Waifu", "Fampai/hutao_genshin_impact", "HuTao"),
    Model("Waifu", "Fampai/hutao_genshin_impact", "hutao_genshin"),
    Model("Genshin", "Fampai/hutao_genshin_impact", "hutao_genshin"),
    Model("Genshin", "Fampai/hutao_genshin_impact", "HuTao_Genshin"),
    Model("Genshin", "Fampai/hutao_genshin_impact", "HuTao Genshin"),
    Model("Genshin", "Fampai/hutao_genshin_impact", "HuTao"),
    Model("Genshin", "Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "Female"),
    Model("Genshin", "Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "female"),
    Model("Genshin", "Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "Woman"),
    Model("Genshin", "Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "woman"),
    Model("Genshin", "Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "Girl"),
    Model("Genshin", "Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "girl"),
    Model("Genshin", "Fampai/lumine_genshin_impact", "Female"),
    Model("Genshin", "Fampai/lumine_genshin_impact", "female"),
    Model("Genshin", "Fampai/lumine_genshin_impact", "Woman"),
    Model("Genshin", "Fampai/lumine_genshin_impact", "woman"),
    Model("Genshin", "Fampai/lumine_genshin_impact", "Girl"),
    Model("Genshin", "Fampai/lumine_genshin_impact", "girl"),
    Model("Genshin", "Eppinette/Mona", "Female"),
    Model("Genshin", "Eppinette/Mona", "female"),
    Model("Genshin", "Eppinette/Mona", "Woman"),
    Model("Genshin", "Eppinette/Mona", "woman"),
    Model("Genshin", "Eppinette/Mona", "Girl"),
    Model("Genshin", "Eppinette/Mona", "girl"),
    Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "Female"),
    Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "female"),
    Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "Woman"),
    Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "woman"),
    Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "Girl"),
    Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "girl"),
    Model("Genshin", "Fampai/raiden_genshin_impact", "Female"),
    Model("Genshin", "Fampai/raiden_genshin_impact", "female"),
    Model("Genshin", "Fampai/raiden_genshin_impact", "Woman"),
    Model("Genshin", "Fampai/raiden_genshin_impact", "woman"),
    Model("Genshin", "Fampai/raiden_genshin_impact", "Girl"),
    Model("Genshin", "Fampai/raiden_genshin_impact", "girl"),
    Model("Genshin", "Fampai/hutao_genshin_impact", "Female"),
    Model("Genshin", "Fampai/hutao_genshin_impact", "female"),
    Model("Genshin", "Fampai/hutao_genshin_impact", "Woman"),
    Model("Genshin", "Fampai/hutao_genshin_impact", "woman"),
    Model("Genshin", "Fampai/hutao_genshin_impact", "Girl"),
    Model("Genshin", "Fampai/hutao_genshin_impact", "girl"),
    Model("Waifu", "crumb/genshin-stable-inversion, yuiqena/GenshinImpact, Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "Genshin"),
    Model("Waifu", "crumb/genshin-stable-inversion, yuiqena/GenshinImpact, Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "Genshin Impact"),
    Model("Genshin", "crumb/genshin-stable-inversion, yuiqena/GenshinImpact, Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", ""),
    Model("Waifu", "crumb/genshin-stable-inversion", "Genshin"),
    Model("Waifu", "crumb/genshin-stable-inversion", "Genshin Impact"),
    Model("Genshin", "crumb/genshin-stable-inversion", ""),
    Model("Waifu", "yuiqena/GenshinImpact", "Genshin"),
    Model("Waifu", "yuiqena/GenshinImpact", "Genshin Impact"),
    Model("Genshin", "yuiqena/GenshinImpact", ""),
    Model("Waifu", "hakurei/waifu-diffusion, flax/waifu-diffusion, technillogue/waifu-diffusion, Guizmus/AnimeChanStyle, katakana/2D-Mix", ""),
    Model("Pokémon", "lambdalabs/sd-pokemon-diffusers, svjack/Stable-Diffusion-Pokemon-en", "pokemon style"),
    Model("Pokémon", "lambdalabs/sd-pokemon-diffusers, svjack/Stable-Diffusion-Pokemon-en", ""),
    Model("Test", "AdamoOswald1/Idk", ""),
    Model("Anime", "Guizmus/AnimeChanStyle", "AnimeChan Style"),
    Model("Genshin", "Guizmus/AnimeChanStyle", "AnimeChan Style"),
    Model("Waifu", "Guizmus/AnimeChanStyle", "AnimeChan Style"),
    Model("Waifu", "Guizmus/AnimeChanStyle", "Genshin"),
    Model("Waifu", "Guizmus/AnimeChanStyle", "Genshin Impact"),
    Model("Genshin", "Guizmus/AnimeChanStyle", ""),
    Model("Anime", "Guizmus/AnimeChanStyle", ""),
    Model("Waifu", "Guizmus/AnimeChanStyle", ""),
    Model("Anime", "Guizmus/AnimeChanStyle, katakana/2D-Mix", ""),
    Model("Anime", "katakana/2D-Mix", "2D-Mix"),
    Model("Genshin", "katakana/2D-Mix", "2D-Mix"),
    Model("Waifu", "katakana/2D-Mix", "2D-Mix"),
    Model("Waifu", "katakana/2D-Mix", "Genshin"),
    Model("Waifu", "katakana/2D-Mix", "Genshin Impact"),
    Model("Genshin", "katakana/2D-Mix", ""),
    Model("Anime", "katakana/2D-Mix", ""),
    Model("Waifu", "katakana/2D-Mix", ""),
    Model("Beeple", "riccardogiorato/beeple-diffusion", "beeple style "),
    Model("Avatar", "riccardogiorato/avatar-diffusion", "avatartwow style "),
    Model("Poolsuite", "prompthero/poolsuite", "poolsuite style ")
  ]
# Model("Beksinski", "s3nh/beksinski-style-stable-diffusion", "beksinski style "),
# Model("Guohua", "Langboat/Guohua-Diffusion", "guohua style ")
     
scheduler = DPMSolverMultistepScheduler(
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    num_train_timesteps=1000,
    trained_betas=None,
    predict_epsilon=True,
    thresholding=False,
    algorithm_type="dpmsolver++",
    solver_type="midpoint",
    lower_order_final=True,
)

custom_model = None
if is_colab:
  models.insert(0, Model("Custom model", "", ""))
  custom_model = models[0]

last_mode = "txt2img"
current_model = models[1] if is_colab else models[0]
current_model_path = current_model.path

if is_colab:
  pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16, scheduler=scheduler)
  pipe = StableDiffusionPipeline.from_pretrained("hakurei/waifu-diffusion", torch_type=torch.float16, revision="fp16")
  pipe = StableDiffusionPipeline.from_pretrained(current_model, torch_dtype=torchfloat, revision="fp16")
  gpt2_pipe = pipeline('text-generation', model='Gustavosta/MagicPrompt-Stable-Diffusion', tokenizer='gpt2')
  pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=True, revision="fp16", torch_dtype=torch.float16).to("cuda")
  pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16)
  pipeline = DiffusionPipeline.from_pretrained("flax/waifu-diffusion")
  pipeline = DiffusionPipeline.from_pretrained("flax/Cyberpunk-Anime-Diffusion")
  pipeline = DiffusionPipeline.from_pretrained("technillogue/waifu-diffusion")
  pipeline = DiffusionPipeline.from_pretrained("svjack/Stable-Diffusion-Pokemon-en")
  pipeline = DiffusionPipeline.from_pretrained("AdamOswald1/Idk")
  pipeline = DiffusionPipeline.from_pretrained("katakana/2D-Mix")

else: # download all models
  vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=torch.float16)
  for model in models:
    try:
        unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=torch.float16)
        model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
        model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
    except:
        models.remove(model)
  pipe = models[0].pipe_t2i
  
if torch.cuda.is_available():
  pipe = pipe.to("cuda")

device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"

def custom_model_changed(path):
  models[0].path = path
  global current_model
  current_model = models[0]

def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):

  global current_model
  for model in models:
    if model.name == model_name:
      current_model = model
      model_path = current_model.path

  generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None

  if img is not None:
    return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator)
  else:
    return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator)

def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator=None):

    global last_mode
    global pipe
    global current_model_path
    if model_path != current_model_path or last_mode != "txt2img":
        current_model_path = model_path

        if is_colab or current_model == custom_model:
          pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler)
        else:
          pipe.to("cpu")
          pipe = current_model.pipe_t2i

        if torch.cuda.is_available():
          pipe = pipe.to("cuda")
        last_mode = "txt2img"

    prompt = current_model.prefix + prompt  
    result = pipe(
      prompt,
      negative_prompt = neg_prompt,
      # num_images_per_prompt=n_images,
      num_inference_steps = int(steps),
      guidance_scale = guidance,
      width = width,
      height = height,
      generator = generator)
 

def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator=None):

    global last_mode
    global pipe
    global current_model_path
    if model_path != current_model_path or last_mode != "img2img":
        current_model_path = model_path

        if is_colab or current_model == custom_model:
          pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler)
        else:
          pipe.to("cpu")
          pipe = current_model.pipe_i2i
        
        if torch.cuda.is_available():
          pipe = pipe.to("cuda")
        last_mode = "img2img"

    prompt = current_model.prefix + prompt
    ratio = min(height / img.height, width / img.width)
    img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
    result = pipe(
        prompt,
        negative_prompt = neg_prompt,
        # num_images_per_prompt=n_images,
        init_image = img,
        num_inference_steps = int(steps),
        strength = strength,
        guidance_scale = guidance,
        width = width,
        height = height,
        generator = generator)
        
css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
    gr.HTML(
        f"""
            <div class="finetuned-diffusion-div">
              <div>
                <h1>Playground Diffusion</h1>
              </div>
              <p>
               Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
                <a href="https://huggingface.co/riccardogiorato/avatar-diffusion">Avatar</a>,<br/>
               <a href="https://huggingface.co/riccardogiorato/beeple-diffusion">Beeple</a>,<br/>
               <a href="https://huggingface.co/s3nh/beksinski-style-stable-diffusion">Beksinski</a>,<br/>
               Diffusers 🧨 SD model hosted on HuggingFace 🤗.
               Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
              </p>
            </div>
        """
    )
    with gr.Row():
        
        with gr.Column(scale=55):
          with gr.Group():
              model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
              with gr.Box(visible=False) as custom_model_group:
                custom_model_path = gr.Textbox(label="Custom model path", placeholder="Path to model, e.g. nitrosocke/Arcane-Diffusion", interactive=True)
                gr.HTML("<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>")
              
              with gr.Row():
                prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
                generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))


              image_out = gr.Image(height=512)
              # gallery = gr.Gallery(
              #     label="Generated images", show_label=False, elem_id="gallery"
              # ).style(grid=[1], height="auto")

        with gr.Column(scale=45):
          with gr.Tab("Options"):
            with gr.Group():
              neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")

              # n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)

              with gr.Row():
                guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
                steps = gr.Slider(label="Steps", value=25, minimum=2, maximum=75, step=1)

              with gr.Row():
                width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
                height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)

              seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)

          with gr.Tab("Image to image"):
              with gr.Group():
                image = gr.Image(label="Image", height=256, tool="editor", type="pil")
                strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)

    if is_colab:
      model_name.change(lambda x: gr.update(visible = x == models[0].name), inputs=model_name, outputs=custom_model_group)
      custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None)
    # n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)

    inputs = [model_name, prompt, guidance, steps, width, height, seed, image, strength, neg_prompt]
    prompt.submit(inference, inputs=inputs, outputs=image_out)
    generate.click(inference, inputs=inputs, outputs=image_out)

if not is_colab:
  demo.queue(concurrency_count=1)
demo.launch(debug=is_colab, share=is_colab)