--- license: mit base_model: roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-large-1-second results: [] --- # roberta-large-1-second This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9356 - Accuracy: 0.7715 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7871 | 1.0 | 769 | 1.6188 | 0.6694 | | 1.5364 | 2.0 | 1538 | 1.4230 | 0.6828 | | 1.4249 | 3.0 | 2307 | 1.3059 | 0.7067 | | 1.336 | 4.0 | 3076 | 1.1884 | 0.7290 | | 1.2366 | 5.0 | 3845 | 1.1214 | 0.74 | | 1.1394 | 6.0 | 4614 | 1.0214 | 0.7601 | | 1.0744 | 7.0 | 5383 | 0.9801 | 0.7664 | | 1.0196 | 8.0 | 6152 | 0.9696 | 0.7646 | | 0.9896 | 9.0 | 6921 | 0.9356 | 0.7715 | | 0.9754 | 10.0 | 7690 | 0.9357 | 0.7704 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0