AdaptLLM commited on
Commit
2b1a3c4
1 Parent(s): 7175f77

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -43,8 +43,8 @@ For example, to chat with the law model:
43
  ```python
44
  from transformers import AutoModelForCausalLM, AutoTokenizer
45
 
46
- model = AutoModelForCausalLM.from_pretrained("AdaptLLM/law-chat")
47
- tokenizer = AutoTokenizer.from_pretrained("AdaptLLM/law-chat", use_fast=False)
48
 
49
  # Put your input here:
50
  user_input = '''Question: Which of the following is false about ex post facto laws?
@@ -56,11 +56,11 @@ Options:
56
 
57
  Please provide your choice first and then provide explanations if possible.'''
58
 
59
- # We use the prompt template of LLaMA-2-Chat demo
60
- prompt = f"<s>[INST] <<SYS>>\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n<</SYS>>\n\n{user_input} [/INST]"
61
 
62
  inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).input_ids.to(model.device)
63
- outputs = model.generate(input_ids=inputs, max_length=4096)[0]
64
 
65
  answer_start = int(inputs.shape[-1])
66
  pred = tokenizer.decode(outputs[answer_start:], skip_special_tokens=True)
 
43
  ```python
44
  from transformers import AutoModelForCausalLM, AutoTokenizer
45
 
46
+ model = AutoModelForCausalLM.from_pretrained("AdaptLLM/law-LLM")
47
+ tokenizer = AutoTokenizer.from_pretrained("AdaptLLM/law-LLM", use_fast=False)
48
 
49
  # Put your input here:
50
  user_input = '''Question: Which of the following is false about ex post facto laws?
 
56
 
57
  Please provide your choice first and then provide explanations if possible.'''
58
 
59
+ # Simply use your input as the prompt for base models
60
+ prompt = user_input
61
 
62
  inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).input_ids.to(model.device)
63
+ outputs = model.generate(input_ids=inputs, max_length=2048)[0]
64
 
65
  answer_start = int(inputs.shape[-1])
66
  pred = tokenizer.decode(outputs[answer_start:], skip_special_tokens=True)